Deposition of transparent TiO2 nanotubes-films via electrophoretic technique for photovoltaic applications
详细信息    查看全文
  • 作者:Jin Zhang ; Shijie Li ; Pengfei Yang ; Wenxiu Que ; Weiguo Liu
  • 刊名:Science China Materials
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:58
  • 期:10
  • 页码:785-790
  • 全文大小:953 KB
  • 参考文献:1.Mor GK, Varghese OK, Paulose M, et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol Energy Mater Sol Cells, 2006, 90: 2011–2075CrossRef
    2.Liu R, Qiang LS, Yang WD, et al. Enhanced conversion efficiency of dye-sensitized solar cells using Sm2O3–modified TiO2 nanotubes. J Power Sources, 2013, 223: 254–258CrossRef
    3.Gao XF, Chen JH, Yuan C. Enhancing the performance of free-standing TiO2 nanotube arrays based dye-sensitized solar cells via ultraprecise control of the nanotube wall thickness. J Power Sources, 2013, 240: 503–509CrossRef
    4.Wang KY, Liu GH, Hoivik N, et al. Electrochemical engineering of hollow nanoarchitectures: pulse/step anodization (Si, Al, Ti) and their applications. Chem Soc Rev, 2014, 43: 1476–1500CrossRef
    5.Panda SK, Yoon Y, Jung HS, et al. Nanoscale size effect of titania (anatase) nanotubes with uniform wall thickness as high performance anode for lithium-ion secondary battery. J Power Sources, 2012, 204: 162–167CrossRef
    6.Zhang Y, Xin Q, Cong Y, et al. Application of TiO2 nanotubes with pulsed plasma for phenol degradation. Chem Eng, 2013, 215–216: 261–268CrossRef
    7.Lin LY, Ye MH, Tsai KW, et al. Highly ordered TiO2 nanotube stamps on Ti foils: synthesis and application for all flexible dye-sensitized solar cells. Electrochem Commun, 2013, 37: 71–75CrossRef
    8.Chen S, Ostrom C, Chen A. Functionalization of TiO2 nanotubes with palladium nanoparticles for hydrogen sorption and storage. Int J Hydrog Energy, 2013, 38: 14002–14009CrossRef
    9.Balakrishnan M, Narayanan R. Synthesis of anodic titania nanotubes in Na2SO4/NaF electrolyte: a comparison between anodization time and specimens with biomaterial based approaches. Thin Solid Films, 2013, 540: 23–30CrossRef
    10.Varghese OK, PauloseM, Grimes CA. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat Nanotechnol, 2009, 4: 592–597CrossRef
    11.Zhong P, Liao YL, Que WX, et al. Enhanced electron collection in photoanode based on ultrafine TiO2 nanotubes by a rapid anodization process. J Solid State Electrochem, 2014, 18: 2087–2098CrossRef
    12.Xu C, Shin PH, Cao L, et al. Ordered TiO2 nanotube arrays on transparent conductive oxide for dye-sensitized solar cells. Chem Mater, 2010, 22: 143–148CrossRef
    13.Roy P, Albu SP, Schmuki P. TiO2 nanotubes in dye-sensitized solar cells: higher efficiencies by well-defined tube tops. Electrochem Commun, 2010, 12: 949–951CrossRef
    14.Li LL, Tsai CY, Wu HP, et al. Fabrication of long TiO2 nanotube arrays in a short time using a hybrid anodic method for highly efficient dye-sensitized solar cells. J Mater Chem, 2010, 20: 2753–2819CrossRef
    15.Lei BX, Liao JY, Zhang R, et al. Ordered crystalline TiO2 nanotube arrays on transparent FTO glass for efficient dye-sensitized solar cells. J Phys Chem C, 2010, 114: 15228–15233CrossRef
    16.Zhuge F, Qiu J, Li X, et al. Toward hierarchical TiO2 nanotube arrays for efficient dye-sensitized solar cells. Adv Mater, 2011, 23: 1330–1334CrossRef
    17.Pang Q, Leng L, Zhao L, et al. Dye sensitized solar cells using freestanding TiO2 nanotube arrays on FTO substrate as photoanode. Mater Chem Phys, 2011, 125: 612–616CrossRef
    18.So S, Lee K, Schmuki P. High-aspect-ratio dye-sensitized solar cells based on robust, fast-growing TiO2 nanotubes. Chem Eur J, 2013, 19: 2966–2970CrossRef
    19.Mir N, Lee K, Paramasivam I, et al. Optimizing TiO2 nanotube top geometry for use in dye-sensitized solar cells. Chem Eur J, 2012, 18: 11862–11866CrossRef
    20.Liu N, Albu SP, Lee K, et al. Water annealing and other low temperature treatments of anodic TiO2 nanotubes: a comparison of properties and efficiencies in dye sensitized solar cells and for water splitting. Electrochim Acta, 2012, 82: 98–102CrossRef
    21.Li KL, Xie ZB, Adams S. A reliable TiO2 nanotube membrane transfer method and its application in photovoltaic devices. Electrochim Acta, 2012, 62: 116–123CrossRef
    22.Fan K, Chen J, Yang F, et al. Self-organized film of ultra-fine TiO2 nanotubes and its application to dye-sensitized solar cells on a flexible Ti-foil substrate. J Mater Chem, 2012, 22: 4681–4686CrossRef
    23.Mirabolghasemi H, Liu N, Lee K, et al. Formation of ‘single walled’ TiO2 nanotubes with significantly enhanced electronic properties for higher efficiency dye-sensitized solar cells. Chem Commun, 2013, 49: 2067–2069CrossRef
    24.Lee K, Schmuki P. Bottom sealing and photoelectrochemical properties of different types of anodic TiO2 nanotubes. Electrochim Acta, 2013, 100: 229–235CrossRef
    25.Hahn R, Stergiooulus T, Macak JM, et al. Efficient solar energy conversion using TiO2 nanotubes produced by rapid breakdown anodization a comparison. Phys Status Solidi-Rapid Res Lett, 2007, 1: 135–137CrossRef
    26.Zhu K, Neale NR, Miedaner A, et al. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett, 2007, 7: 69–74CrossRef
    27.Lee KS, Kwon J, Im JH, et al. Size-tunable, fast, and facile synthesis of titanium oxide nanotube powders for dye-sensitized solar cells. ACS Appl Mater Interfaces, 2012, 4: 4164–4168CrossRef
    28.Zhang Q, Gao L, Sun J, et al. Preparation of long TiO2 nanotubes from ultrafine rutile nanocrystals. Chem Lett, 2002, 2: 226–227CrossRef
    29.Caruso RA, Schattka JH, Greiner A. Titanium dioxide tubes from sol–gel coating of electrospun polymer fibers. Adv Mater, 2001, 13: 1577–1579CrossRef
    30.Ma DL, Schadler LS, Siegel RW, et al. Preparation and structure investigation of nanoparticle-assembled titanium dioxide microtubes. Appl Phys Lett, 2003, 83: 1839CrossRef
    31.Kasuga T, Hiramatsu M, Hoson A, et al. Titania nanotubes prepared by chemical processing. Adv Mater, 1999, 11: 1307–1311CrossRef
    32.Kim G, Seo H, Godble VP, et al. Electrophoretic deposition of titanate nanotubes from commercial titania nanoparticles: application to dye-sensitized solar cells. Electrochem Comm, 2006, 8: 961–966CrossRef
    33.Chiu WH, Lee KM, Hsieh WF. High efficiency flexible dye-sensitized solar cells by multiple electrophoretic depositions. J Power Sources, 2011, 196: 3683–3687CrossRef
    34.Chou JC, Lin SC, Liao YH, et al. The influence of electrophoretic deposition for fabricating dye-sensitized solar cell. J Nanomater, 2014, 126053
    35.Liao Y, Que WX, Zhang J, et al. A facile method for rapid preparation of individual titania nanotube powders by a two-step process. Mater Res Bull, 2011, 46: 478–482CrossRef
    36.Ito S, Murakami TN, Comte P, et al. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films, 2008, 516: 4613–4619CrossRef
    37.Gardeshzadeh AR, Raissi B, Marzbanrad E. Electrophoretic deposition of SnO2 nanoparticles using low frequency A Celectric fields. Mater Lett, 2008, 62: 1697–1699CrossRef
    38.Besra L, Liu M. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci, 2007, 52: 1–61CrossRef
  • 作者单位:Jin Zhang (1)
    Shijie Li (1)
    Pengfei Yang (1)
    Wenxiu Que (2)
    Weiguo Liu (1)

    1. School of Optoelectronic Engineering, Xi’an Technological University, Xi’an, 710032, China
    2. School of Electronic and Information Engineering, Xi’an Jiao tong University, Xi’an, 710049, China
  • 刊物类别:Materials Science, general; Chemistry/Food Science, general;
  • 刊物主题:Materials Science, general; Chemistry/Food Science, general;
  • 出版者:Science China Press
  • ISSN:2199-4501
文摘
In this paper, semitransparent TiO2 nanotube-films were prepared on fluorine doped tin oxide (FTO) glass by the electrophoretic deposition (EPD) process and their properties were characterized. Furthermore, dye-sensitized solar cells (DSSCs) based on the as-prepared TiO2 nanotube-films were assembled, and effects of the film thickness and EPD voltage on performance of the DSSCs were investigated. Power conversion efficiency with the maximum value of 7.10% was successfully achieved, indicating the semitransparent TiO2 nanotube-films are very promising for high transmittance substrates and high efficiency photovoltaic electrodes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700