Molecular dynamic analysis of mutant Y195I α-cyclodextrin glycosyltransferase with switched product specificity from α-cyclodextrin to γ-cyclodextrin
详细信息    查看全文
  • 作者:Fangjin Chen ; Ting Xie ; Yang Yue ; Shijun Qian ; Yapeng Chao…
  • 关键词:Cyclodextrin glucanotransferases ; Y195I α ; CGTase ; α ; CD ; γ ; CD ; Molecular dynamic simulation
  • 刊名:Journal of Molecular Modeling
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:21
  • 期:8
  • 全文大小:1,647 KB
  • 参考文献:1.Knegtel RM, Strokopytov B, Penninga D, Faber OG, Rozeboom HJ, Kalk KH, Dijkhuizen L, Dijkstra BW (1995) Crystallographic studies of the interaction of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 with natural substrates and products. J Biol Chem 270(49):29256-9264View Article
    2.Knegtel RM, Wind RD, Rozeboom HJ, Kalk KH, Buitelaar RM, Dijkhuizen L, Dijkstra BW (1996) Crystal structure at 2.3 A resolution and revised nucleotide sequence of the thermostable cyclodextrin glycosyltransferase from Thermonanaerobacterium thermosulfurigenes EM1. J Mol Biol 256(3):611-22View Article
    3.Leemhuis H, Dijkstra BW, Dijkhuizen L (2002) Mutations converting cyclodextrin glycosyltransferase from a transglycosylase into a starch hydrolase. FEBS Lett 514(2-):189-92View Article
    4.Strokopytov B, Penninga D, Rozeboom HJ, Kalk KH, Dijkhuizen L, Dijkstra BW (1995) X-ray structure of cyclodextrin glycosyltransferase complexed with acarbose. Implications for the catalytic mechanism of glycosidases. Biochemistry 34(7):2234-240View Article
    5.Uitdehaag JC, Mosi R, Kalk KH, van der Veen BA, Dijkhuizen L, Withers SG, Dijkstra BW (1999) X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family. Nat Struct Biol 6(5):432-36. doi:10.-038/-235 View Article
    6.Klein C, Schulz GE (1991) Structure of cyclodextrin glycosyltransferase refined at 2.0 A resolution. J Mol Biol 217(4):737-50View Article
    7.Strokopytov B, Knegtel RM, Penninga D, Rozeboom HJ, Kalk KH, Dijkhuizen L, Dijkstra BW (1996) Structure of cyclodextrin glycosyltransferase complexed with a maltononaose inhibitor at 2.6 angstrom resolution. Implications for product specificity. Biochemistry 35(13):4241-249. doi:10.-021/?bi952339h View Article
    8.Penninga D, Strokopytov B, Rozeboom HJ, Lawson CL, Dijkstra BW, Bergsma J, Dijkhuizen L (1995) Site-directed mutations in tyrosine 195 of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 affect activity and product specificity. Biochemistry 34(10):3368-376View Article
    9.Parsiegla G, Schmidt AK, Schulz GE (1998) Substrate binding to a cyclodextrin glycosyltransferase and mutations increasing the gamma-cyclodextrin production. Eur J Biochem / FEBS 255(3):710-17View Article
    10.Wind RD, Uitdehaag JC, Buitelaar RM, Dijkstra BW, Dijkhuizen L (1998) Engineering of cyclodextrin product specificity and pH optima of the thermostable cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1. J Biol Chem 273(10):5771-779View Article
    11.van der Veen BA, Uitdehaag JC, Dijkstra BW, Dijkhuizen L (2000) The role of arginine 47 in the cyclization and coupling reactions of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 implications for product inhibition and product specificity. Eur J Biochem / FEBS 267(12):3432-441View Article
    12.van der Veen BA, Uitdehaag JC, Penninga D, van Alebeek GJ, Smith LM, Dijkstra BW, Dijkhuizen L (2000) Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase alpha-cyclodextrin production. J Mol Biol 296(4):1027-038. doi:10.-006/?jmbi.-000.-528 View Article
    13.Li Z, Wang M, Wang F, Gu Z, Du G, Wu J, Chen J (2007) gamma-Cyclodextrin: a review on enzymatic production and applications. Appl Microbiol Biotechnol 77(2):245-55. doi:10.-007/?s00253-007-1166-7 View Article
    14.Nakamura A, Haga K, Yamane K (1994) Four aromatic residues in the active center of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 1011: effects of replacements on substrate binding and cyclization characteristics. Biochemistry 33(33):9929-936View Article
    15.Xie T, Song B, Yue Y, Chao Y, Qian S (2014) Site-saturation mutagenesis of central tyrosine 195 leading to diverse product specificities of an alpha-cyclodextrin glycosyltransferase from Paenibacillus sp. 602-. J Biotechnol 170:10-6. doi:10.-016/?j.?jbiotec.-013.-0.-32 View Article
    16.Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779-15. doi:10.-006/?jmbi.-993.-626 View Article
    17.Eswar N, Eramian D, Webb B, Shen MY, Sali A (2008) Protein structure modeling with MODELLER. Methods Mol Biol 426:145-59. doi:10.-007/-78-1-60327-058-8_- View Article
    18.Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2007) Comparative protein structure modeling using MODELLER. In: Baxevanis AD, Petsko GA, Stein LD, Stormo GD (eds) Current protocols in protein science. Chapter 2:Unit 2 9. Wiley, New York. doi:10.-002/-471140864.?ps0209s50
    19.Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33-8, 27-8 View Article
    20.Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein Chem 66:27-5View Article
    21.Kirschner KN, Yongye AB, Tschampel SM, Gonzalez-
  • 作者单位:Fangjin Chen (1)
    Ting Xie (2) (3)
    Yang Yue (2)
    Shijun Qian (2)
    Yapeng Chao (2)
    Jianfeng Pei (1) (4)

    1. Center for Quantitative Biology, AAIS, Peking University, Beijing, China, 100871
    2. State Key Laboratories of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, 100101
    3. University of Chinese Academy of Sciences, Beijing, China, 100101
    4. State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
Alpha-cyclodextrin (α-CD) glycosyltransferase (α-CGTase) can convert starch into α-CD blended with various proportions of β-cyclodextrin (β-CD) and/or γ-cyclodextrin (γ-CD). In this study, we verified the catalytic characteristics of purified Y195I α-CGTase and elucidated the mechanism of action with molecular dynamic (MD) simulations. We found that purified Y195I α-CGTase produced less α-CD, slightly more β-CD, and significantly more γ-CD than wild-type α-CGTase. Correspondingly, α-CD-based K m values increased, and β-CD- and γ-CD-based K m values decreased. MD simulation studies revealed that the dynamic trajectories of the substrate oligosaccharide chain in the mutant CGTase binding site were significantly different from those in the wild-type enzyme, with reduced hydrophobic interaction, finally resulting in different product specificity and more γ-CD formation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700