CO adsorption on a zigzag SiC nanotube: effects of concentration density and local torsion on transport
详细信息    查看全文
  • 作者:Jian-ming Jia ; Shin-pon Ju ; Da-ning Shi ; Kuan-fu Lin
  • 关键词:SiC nanotube ; CO molecules ; Adsorption ; Transport property
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:15
  • 期:10
  • 全文大小:660KB
  • 参考文献:1. Andersson M, Pearce R, Spetz AL (2013) New generation SiC based field effect transistor gas sensors. Sens Actuators B 179:95-06 CrossRef
    2. Baierle RJ, Miwa RH (2007) Hydrogen interaction with native defects in SiC nanotubes. Phys Rev B 76:205410 CrossRef
    3. Baumeier B, Krüger P, Pollma J (2007) Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Phys Rev B 76:085407 CrossRef
    4. Brandbyge M, Mozos J-L, Ordejón P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65:165401 CrossRef
    5. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287:1801-804 CrossRef
    6. da Silva LB, Fagan SB, Mota R (2004) Ab initio study of deformed carbon nanotube sensors for carbon monoxide molecules. Nano Lett 4:65-7 CrossRef
    7. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508-17 CrossRef
    8. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756-764 CrossRef
    9. Gali A (2006) Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes. Phys Rev B 73:245415 CrossRef
    10. Gali A (2007) Ab initio theoretical study of hydrogen and its interaction with boron acceptors and nitrogen donors in single-wall silicon carbide nanotubes. Phys Rev B 75:085416 CrossRef
    11. Harris GL (1995) Properties of silicon carbide. INSPEC: Institution of Electrical Engineers, London
    12. He T, Zhao MW, Xia YY, Li WF, Song C, Lin XH, Liu XD, Mei LM (2006) Tuning the electronic structures of semiconducting SiC nanotubes by N and NHx (x?=?1,2) groups. J Chem Phys 125:194710 CrossRef
    13. Jhi SH, Louie SG, Cohen ML (2000) Electronic properties of oxidized carbon nanotubes. Phys Rev Lett 85:1710-713 CrossRef
    14. Jia JM, Ju SP, Shi DN, Lin KF (2011) Electromechanical response of a SiC nanotube under local torsional deformation. J Phys Chem C 115:24347-4352 CrossRef
    15. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho K, Dai HJ (2000) Nanotube molecular wires as chemical sensors. Science 287:622-25 CrossRef
    16. Kong J, Chapline MG, Dai HJ (2001) Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater 13:1384-386 CrossRef
    17. Li F, Xia YY, Zhao MW, Liu XD, Huang BD, Yang ZH, Ji YJ, Song C (2005) Density-functional theory calculations of / XH3-decorated SiC nanotubes ( / X?=?{C, Si}): structures, energetics, and electronic structures. J Appl Phys 97:104311 CrossRef
    18. Li KJ, Wang WC, Cao DP (2011) Metal (Pd, Pt)-decorated carbon nanotubes for CO and NO sensing. Sens Actuators B 159:171-77 CrossRef
    19. Mavrandonakis A, Froudakis GE, Schnell M, Muhlhauser M (2003) From pure carbon to silicon?carbon nanotubes: an ab initio study. Nano Lett 3:1481-484 CrossRef
    20. Meng TZ, Wang CY, Wang SY (2007) First-principles study of a single Ti atom adsorbed on silicon carbide nanotubes and the corresponding adsorption of hydrogen molecules to the Ti atom. Chem Phys Lett 437:224-28 CrossRef
    21. Menon M, Richter E, Mavrandonakis A, Froudakis G, Andriotis AN (2004) Structure and stability of SiC nanotubes. Phys Rev B 69:115322 CrossRef
    22. Miyamoto Y, Yu BD (2002) Computational designing of graphitic silicon carbide and its tubular forms. Appl Phys Lett 80:586-88 CrossRef
    23. Monkhorst HJ, Pack JK (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188-192 CrossRef
    24. Park H, Zhao JJ, Lu JP (2006) Effects of sidewall functionalization on conducting properties of single wall carbon nanotubes. Nano Lett 6:916-19 CrossRef
    25. Peng S, Cho K (2000) Chemical control of nanotube electronics. Nanotechnology 11:57-0 CrossRef
    26. Peng S, Cho K (2003) Ab initio study of doped carbon nanotube sensors. Nano Lett 3:513-17 CrossRef
    27. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048-079 CrossRef
    28. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys 14:2745-779
    29. Sun XH, Li CP, Wong WK, Wong NB, Lee CS, Lee ST, Teo BK (2002) Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J Am Chem Soc 124:14464-4471 CrossRef
    30. Szabó á, Gali A (2009) Effect of oxygen on single-wall silicon carbide nanotubes studied by first-principles calculations. Phys Rev B 80:075425 CrossRef
    31. Taylor J, Guo H, Wang J (2001) Ab initio modeling of quantum transport properties of molecular electronic devices. Phys Rev B 63:245407 CrossRef
    32. Teo BK, Sun XH (2007) Silicon-based low-dimensional nanomaterials and nanodevices. Chem Rev 107:1454-532 CrossRef
    33. Tombler TW, Zhou CW, Alexseyev L, Kong J, Dai HJ, Liu L, Jayanthi CS, Tang MJ, Wu SY (2000) Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation. Nature 405:769-72 CrossRef
    34. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993-006 CrossRef
    35. Wang XQ, Wang BL, Zhao JJ, Wang GH (2008) Structural transitions and electronic properties of the ultrathin SiC nanotubes under uniaxial compression. Chem Phys Lett 461:280-84 CrossRef
    36. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971-975 CrossRef
    37. Wu RQ, Yang M, Lu YH, Feng YP, Huang ZG, Wu QY (2008) Silicon carbide nanotubes as potential gas sensors for CO and HCN detection. J Phys Chem C 112:15985-5988 CrossRef
    38. Zhao JX, Ding YH (2009) Can silicon carbide nanotubes sense carbon dioxide? J Chem Theory Comput 5:1099-105 CrossRef
    39. Zhao JJ, Buldum A, Han J, Lu JP (2002) Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 13:195-00 CrossRef
    40. Zhao JJ, Chen ZF, Zhou Z, Park H, Schleyer PVR, Lu JP (2005a) Engineering the electronic structure of single-walled carbon nanotubes by chemical functionalization. ChemPhysChem 6:598-01 CrossRef
    41. Zhao MW, Xia YY, Li F, Zhang RQ, Lee S-T (2005b) Strain energy and electronic structures of silicon carbide nanotubes: density functional calculations. Phys Rev B 71:085312 CrossRef
    42. Zhao MW, Xia YY, Zhang RQ, Lee S-T (2005c) Manipulating the electronic structures of silicon carbide nanotubes by selected hydrogenation. J Chem Phys 122:214707 CrossRef
  • 作者单位:Jian-ming Jia (1) (2)
    Shin-pon Ju (3)
    Da-ning Shi (2)
    Kuan-fu Lin (3)

    1. Department of Physics & Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian, 223300, Jiangsu, China
    2. Department of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
    3. Department of Mechanical and Electro-Mechanical Engineering, Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan, ROC
  • ISSN:1572-896X
文摘
The electron transport properties of CO adsorbed SiC nanotubes as a function of concentration density and structural deformation have been characterized for the single-walled (7,0) zigzag model using a combined formalism of density-functional theory and nonequilibrium Green’s function. It is found that CO adsorption can significantly suppress the transmission spectrum of SiC nanotube for a wide range of energies. As the concentration increases, a density-dependent superimposed transport gap exists and widens the initial electronic band gap of SiC nanotube. Under the same applied bias voltage, the current through SiC nanotube decreases with the increasing CO concentrations. The local torsional deformation has no effect on this essential motif. However, the current in the locally twisted system is larger than that of the undeformed one. The transmission suppression and the current differences can be attributed to the response of the localized impurity state induced by CO adsorption to density and deformation. Our results show that SiC nanotube can be a promising gas sensor for CO detection.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700