Ablation of smooth muscle caldesmon affects the relaxation kinetics of arterial muscle
详细信息    查看全文
  • 作者:Hongqiu Guo (1)
    Renjian Huang (1)
    Shingo Semba (1)
    Jolanta Kordowska (1)
    Yang Hoon Huh (1)
    Yana Khalina-Stackpole (1)
    Katsuhide Mabuchi (1)
    Toshio Kitazawa (1)
    Chih-Lueh Albert Wang (1)
  • 关键词:Caldesmon ; Contractile proteins ; Crossbridge kinetics ; Regulation of contraction
  • 刊名:Pfl眉gers Archiv - European Journal of Physiology
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:465
  • 期:2
  • 页码:283-294
  • 全文大小:531KB
  • 参考文献:1. Adam LP, Haeberle JR, Hathaway DR (1989) Phosphorylation of caldesmon in arterial smooth muscle. J Biol Chem 264(13):7698鈥?703
    2. Aksoy MO, Murphy RA, Kamm KE (1982) Role of Ca2+ and myosin light chain phosphorylation in regulation of smooth muscle. Am J Physiol 242:C109鈥揅116
    3. Albrecht K, Schneider A, Liebetrau C, Ruegg JC, Pfitzer G (1997) Exogenous caldesmon promotes relaxation of guinea-pig skinned taenia coli smooth muscles: inhibition of cooperative reattachment of latch bridges? Pflugers Arch 434(5):534鈥?42 CrossRef
    4. Babu GJ, Loukianov E, Loukianova T, Pyne GJ, Huke S, Osol G, Low RB, Paul RJ, Periasamy M (2001) Loss of SM-B myosin affects muscle shortening velocity and maximal force development. Nat Cell Biol 3(11):1025鈥?029 CrossRef
    5. Babu GJ, Pyne GJ, Zhou Y, Okwuchukuasanya C, Brayden JE, Osol G, Paul RJ, Low RB, Periasamy M (2004) Isoform switching from SM-B to SM-A myosin results in decreased contractility and altered expression of thin-filament/regulatory proteins. Am J Physiol Cell Physiol 287(3):C723鈥揅729 CrossRef
    6. Bremel RD, Weber A (1972) Cooperation within actin filament in vertebrate skeletal muscle. Nat New Biol 238(82):97鈥?01
    7. Brenner B, Chalovich JM (1999) Kinetics of thin filament activation probed by fluorescence of N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole-labeled troponin I incorporated into skinned fibers of rabbit psoas muscle: implications for regulation of muscle contraction. Biophys J 77(5):2692鈥?708 CrossRef
    8. Bryan J, Imai M, Lee R, Moore P, Cook RG, Lin WG (1989) Cloning and expression of a smooth muscle caldesmon. J Biol Chem 264(23):13873鈥?3879
    9. de Tombe PP, Belus A, Piroddi N, Scellini B, Walker JS, Martin AF, Tesi C, Poggesi C (2007) Myofilament calcium sensitivity does not affect cross-bridge activation-relaxation kinetics. Am J Physiol Regul Integr Comp Physiol 292(3):R1129鈥揜1136 CrossRef
    10. Dillon PF, Aksoy MO, Driska SP, Murphy RA (1981) Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle. Science 211:495鈥?97 CrossRef
    11. Dingus J, Hwo S, Bryan J (1986) Identification by monoclonal antibodies and characterization of human platelet caldesmon. J Cell Biol 102(5):1748鈥?757 CrossRef
    12. Earley JJ, Su X, Moreland RS (1998) Caldesmon inhibits active crossbridges in unstimulated vascular smooth muscle: an antisense oligodeoxynucleotide approach. Circ Res 83(6):661鈥?67 CrossRef
    13. Eddinger TJ, Schiebout JD, Swartz DR (2005) Smooth muscle adherens junctions associated proteins are stable at the cell periphery during relaxation and activation. Am J Physiol Cell Physiol 289(6):C1379鈥揅1387 CrossRef
    14. Foster DB, Huang R, Hatch V, Craig R, Graceffa P, Lehman W, Wang C-LA (2004) Modes of caldesmon binding to actin: sites of caldesmon contact and modulation of interactions by phosphorylation. J Biol Chem 279(51):53387鈥?3394 CrossRef
    15. Fuglsang A, Khromov A, Torok K, Somlyo AV, Somlyo AP (1993) Flash photolysis studies of relaxation and cross-bridge detachment: higher sensitivity of tonic than phasic smooth muscle to MgADP. J Muscle Res Cell Motil 14(6):666鈥?77 CrossRef
    16. Fujii T, Imai M, Rosenfeld GC, Bryan J (1987) Domain mapping of chicken gizzard caldesmon. J Biol Chem 262(6):2757鈥?763
    17. Galinska-Rakoczy A, Engel P, Xu C, Jung H, Craig R, Tobacman LS, Lehman W (2008) Structural basis for the regulation of muscle contraction by troponin and tropomyosin. J Mol Biol 379(5):929鈥?35 CrossRef
    18. Guo H, Wang C-LA (2005) Specific disruption of smooth muscle caldesmon expression in mice. Biochem Biophys Res Commun 330(4):1132鈥?137 CrossRef
    19. Haeberle JR, Hathaway DR (1992) Correspondence. J Muscle Res Cell Motil 13:584鈥?85 CrossRef
    20. Haeberle JR, Hathaway DR, Smith CL (1992) Caldesmon content of mammalian smooth muscles. J Muscle Res Cell Motil 13(1):81鈥?9 CrossRef
    21. Haeberle JR, Hathaway DR, Smith CL (1992) Caldesmon content of mammalian smooth muscles [see comments]. J Muscle Res Cell Motil 13(1):81鈥?9 CrossRef
    22. Hayashi K, Kanda K, Kimizuka F, Kato I, Sobue K (1989) Primary structure and functional expression of h-caldesmon complementary DNA. Biochem Biophys Res Commun 164(1):503鈥?11 CrossRef
    23. Hemric ME, Chalovich JM (1988) Effect of caldesmon on the ATPase activity and the binding of smooth and skeletal myosin subfragments to actin. J Biol Chem 263(4):1878鈥?885
    24. Hemric ME, Chalovich JM (1990) Characterization of caldesmon binding to myosin. J Biol Chem 265(32):19672鈥?9678
    25. Horiuchi KY, Miyata H, Chacko S (1986) Modulation of smooth muscle actomyosin ATPase by thin filament associated proteins. Biochem Biophys Res Commun 136(3):962鈥?68 CrossRef
    26. Huang R, Wang CL (2006) A caldesmon peptide activates smooth muscle via a mechanism similar to ERK-mediated phosphorylation. FEBS Lett 580(1):63鈥?6 CrossRef
    27. Humphrey MB, Herrera-Sosa H, Gonzalez G, Lee R, Bryan J (1992) Cloning of cDNAs encoding human caldesmons. Gene 112(2):197鈥?04 CrossRef
    28. Ikebe M, Reardon S (1988) Binding of caldesmon to smooth muscle myosin. J Biol Chem 263(7):3055鈥?058
    29. Katsuyama H, Wang C-LA, Morgan KG (1992) Regulation of vascular smooth muscle tone by caldesmon. J Biol Chem 267(21):14555鈥?4558
    30. Khromov A, Somlyo AV, Trentham DR, Zimmermann B, Somlyo AP (1995) The role of MgADP in force maintenance by dephosphorylated cross-bridges in smooth muscle: a flash photolysis study. Biophys J 69(6):2611鈥?622 CrossRef
    31. Kitazawa T, Eto M, Woodsome TP, Brautigan DL (2000) Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J Biol Chem 275(14):9897鈥?900 CrossRef
    32. Kitazawa T, Gaylinn BD, Denney GH, Somlyo AP (1991) G-protein-mediated Ca2+鈭抯ensitization of smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem 266:1708鈥?715
    33. Kitazawa T, Kobayashi S, Horiuti K, Somlyo AV, Somlyo AP (1989) Receptor-coupled, permeabilized smooth muscle: role of the phosphatidylinositol cascade, G-proteins, and modulation of the contractile response to Ca2+. J Biol Chem 264:5339鈥?342
    34. Kuhn H, Tewes A, Gagelmann M, Guth K, Arner A, Ruegg JC (1990) Temporal relationship between force, ATPase activity, and myosin phosphorylation during a contraction/relaxation cycle in a skinned smooth muscle. Pflugers Arch 416(5):512鈥?18 CrossRef
    35. Lee MR, Li L, Kitazawa T (1997) Cyclic GMP causes Ca2+ desensitization in vascular smooth muscle by activating the myosin light chain phosphatase. J Biol Chem 272(8):5063鈥?068 CrossRef
    36. Lehman W, Denault D, Marston S (1992) Novel immunological technique. J Muscle Res Cell Motil 13(5):582鈥?85 CrossRef
    37. Lehman W, Denault D, Marston S (1993) The caldesmon content of vertebrate smooth muscle. Biochim Biophys Acta 1203(1):53鈥?9 CrossRef
    38. Lehman W, Galinska-Rakoczy A, Hatch V, Tobacman LS, Craig R (2009) Structural basis for the activation of muscle contraction by troponin and tropomyosin. J Mol Biol 388(4):673鈥?81 CrossRef
    39. Li Y, Zhuang S, Guo H, Mabuchi K, Lu RC, Wang C-LA (2000) The major myosin-binding site of caldesmon resides near its N-terminal extreme. J Biol Chem 275(15):10989鈥?0994 CrossRef
    40. Lubomirov LT, Reimann K, Metzler D, Hasse V, Stehle R, Ito M, Hartshorne DJ, Gagov H, Pfitzer G, Schubert R (2006) Urocortin-induced decrease in Ca2+ sensitivity of contraction in mouse tail arteries is attributable to cAMP-dependent dephosphorylation of MYPT1 and activation of myosin light chain phosphatase. Circ Res 98(9):1159鈥?167 CrossRef
    41. Mabuchi K, Li Y, Carlos A, Wang CL, Graceffa P (2001) Caldesmon exhibits a clustered distribution along individual chicken gizzard native thin filaments. J Muscle Res Cell Motil 22(1):77鈥?0 CrossRef
    42. Mabuchi K, Li Y, Tao T, Wang C-LA (1996) Immunocytochemical localization of caldesmon and calponin in chicken gizzard smooth muscle. J Muscle Res Cell Motil 17(2):243鈥?60 CrossRef
    43. Mabuchi K, Wang C-LA (1991) Electron microscopic studies of chicken gizzard caldesmon and its complex with calmodulin. J Muscle Res Cell Motil 12(2):145鈥?51 CrossRef
    44. Makuch R, Walsh MP, Dabrowska R (1989) Location of the calmodulin- and actin-binding domains at the C-terminus of caldesmon. FEBS Lett 247(2):411鈥?14 CrossRef
    45. Malmqvist U, Arner A, Makuch R, Dabrowska R (1996) The effects of caldesmon extraction on mechanical properties of skinned smooth muscle fibre preparations. Pflugers Arch 432(2):241鈥?47 CrossRef
    46. Marston SB (1989) What is latch? New ideas about tonic contraction in smooth muscle. J Muscle Res Cell Motil 10(2):97鈥?00 CrossRef
    47. Marston SB, Huber PAJ (1996) Caldesmon. In: B谩r谩ny M (ed) Biochemistry of Smooth Muscle Contraction. Academic Press, Inc., San Diego, pp 77鈥?0 CrossRef
    48. Masuo M, Reardon S, Ikebe M, Kitazawa T (1994) A novel mechanism for the Ca2+鈭抯ensitizing effect of protein kinase C on vascular smooth muscle: inhibition of myosin light chain phosphatase. J Gen Physiol 104(2):265鈥?86 CrossRef
    49. Matsumura F, Yamashiro S (1993) Caldesmon. Curr Opin Cell Biol 5(1):70鈥?6 CrossRef
    50. McKillop DF, Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J 65(2):693鈥?01 CrossRef
    51. Ngai PK, Walsh MP (1987) The effects of phosphorylation of smooth-muscle caldesmon. Biochem J 244(2):417鈥?25
    52. Nishiye E, Somlyo AV, Torok K, Somlyo AP (1993) The effects of MgADP on cross-bridge kinetics: a laser flash photolysis study of guinea-pig smooth muscle. J Physiol 460:247鈥?71
    53. Owada MK, Hakura A, Iida K, Yahara I, Sobue K, Kakiuchi S (1984) Occurrence of caldesmon (a calmodulin-binding protein) in cultured cells: comparison of normal and transformed cells. Proc Natl Acad Sci U S A 81(10):3133鈥?137 CrossRef
    54. Pfitzer G, Schroeter M, Hasse V, Ma J, Rosgen KH, Rosgen S, Smyth N (2005) Is myosin phosphorylation sufficient to regulate smooth muscle contraction? Adv Exp Med Biol 565:319鈥?28; discussion 328, 405鈥?15.
    55. Rembold CM, Wardle RL, Wingard CJ, Batts TW, Etter EF, Murphy RA (2004) Cooperative attachment of cross bridges predicts regulation of smooth muscle force by myosin phosphorylation. Am J Physiol Cell Physiol 287(3):C594鈥揅602 CrossRef
    56. Riseman VM, Lynch WP, Nefsky B, Bretscher A (1989) The calmodulin and F-actin binding sites of smooth muscle caldesmon lie in the carboxyl-terminal domain whereas the molecular weight heterogeneity lies in the middle of the molecule. J Biol Chem 264(5):2869鈥?875
    57. Schroeter MM, Hasse V, Roesgen S, Roesgen K-H, Smyth NR, Diepold A, Chalovich JM, Pfitzer G (2005) Probing the myosin binding region of caldesmon in a knock-out mouse model. Biophys J 88:359a
    58. Sen A, Chen YD, Yan B, Chalovich JM (2001) Caldesmon reduces the apparent rate of binding of myosin S1 to actin- tropomyosin. Biochemistry 40(19):5757鈥?764 CrossRef
    59. Smith CW, Marston SB (1985) Disassembly and reconstitution of the Ca2+鈭抯ensitive thin filaments of vascular smooth muscle. FEBS Lett 184(1):115鈥?19 CrossRef
    60. Smolock EM, Trappanese DM, Chang S, Wang T, Titchenell P, Moreland RS (2009) siRNA-mediated knockdown of h-caldesmon in vascular smooth muscle. Am J Physiol Heart Circ Physiol 297(5):H1930鈥揌1939 CrossRef
    61. Sobieszek A, Bremel RD (1975) Preparation and properties of vertebrate smooth-muscle myofibrils and actomyosin. Eur J Biochem 55(1):49鈥?0 CrossRef
    62. Sobue K, Muramoto Y, Fujita M, Kakiuchi S (1981) Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin. Proc Natl Acad Sci U S A 78(9):5652鈥?655 CrossRef
    63. Somlyo AP, Somlyo AV (1994) Signal transduction and regulation in smooth muscle. Nature 372(6503):231鈥?36 CrossRef
    64. Stafford WF, Jancso A, Graceffa P (1990) Caldesmon from rabbit liver: molecular weight and length by analytical ultracentrifugation. Arch Biochem Biophys 281(1):66鈥?9 CrossRef
    65. Stehle R, Iorga B, Pfitzer G (2007) Calcium regulation of troponin and its role in the dynamics of contraction and relaxation. Am J Physiol Regul Integr Comp Physiol 292(3):R1125鈥揜1128 CrossRef
    66. Stehle R, Kruger M, Pfitzer G (2002) Force kinetics and individual sarcomere dynamics in cardiac myofibrils after rapid ca(2+) changes. Biophys J 83(4):2152鈥?161 CrossRef
    67. Stull JT, Gallagher PJ, Herring BP, Kamm KE (1991) Vascular smooth muscle contractile elements. Cellular regulation. Hypertension 17(6 Pt 1):723鈥?32 CrossRef
    68. Tansey MG, Hori M, Karaki H, Kamm KE, Stull JT (1990) Okadaic acid uncouples myosin light chain phosphorylation and tension in smooth muscle. FEBS Lett 270:219鈥?21 CrossRef
    69. Vibert P, Craig R, Lehman W (1997) Steric-model for activation of muscle thin filaments. J Mol Biol 266(1):8鈥?4 CrossRef
    70. Wang C-LA (2001) Caldesmon and smooth-muscle regulation. Cell Biochem Biophys 35(3):275鈥?88 CrossRef
    71. Wang Z, Jiang H, Yang ZQ, Chacko S (1997) Both N-terminal myosin-binding and C-terminal actin-binding sites on smooth muscle caldesmon are required for caldesmon-mediated inhibition of actin filament velocity. Proc Natl Acad Sci U S A 94(22):11899鈥?1904 CrossRef
    72. Wang CL, Wang LW, Xu SA, Lu RC, Saavedra-Alanis V, Bryan J (1991) Localization of the calmodulin- and the actin-binding sites of caldesmon. J Biol Chem 266(14):9166鈥?172
  • 作者单位:Hongqiu Guo (1)
    Renjian Huang (1)
    Shingo Semba (1)
    Jolanta Kordowska (1)
    Yang Hoon Huh (1)
    Yana Khalina-Stackpole (1)
    Katsuhide Mabuchi (1)
    Toshio Kitazawa (1)
    Chih-Lueh Albert Wang (1)

    1. Boston Biomedical Research Institute, 64 Grove St, Watertown, MA, 02472, USA
  • ISSN:1432-2013
文摘
Smooth muscle caldesmon (h-CaD) is an actin- and myosin-binding protein that reversibly inhibits the actomyosin ATPase activity in vitro. To test the function of h-CaD in vivo, we eliminated its expression in mice. The h-CaD-null animals appeared normal and fertile, although the litter size was smaller. Tissues from the homozygotes lacked h-CaD and exhibited upregulation of the non-muscle isoform, l-CaD, in visceral, but not vascular tonic smooth muscles. While the Ca2+ sensitivity of force generation of h-CaD-deficient smooth muscle remained largely unchanged, the kinetic behavior during relaxation in arteries was different. Both intact and permeabilized arterial smooth muscle tissues from the knockout animals relaxed more slowly than those of the wild type. Since this difference occurred after myosin dephosphorylation was complete, the kinetic effect most likely resulted from slower detachment of unphosphorylated crossbridges. Detailed analyses revealed that the apparently slower relaxation of h-CaD-null smooth muscle was due to an increase in the amplitude of a slower component of the biphasic tension decay. While the identity of this slower process has not been unequivocally determined, we propose it reflects a thin filament state that elicits fewer re-attached crossbridges. Our finding that h-CaD modulates the rate of smooth muscle relaxation clearly supports a role in the control of vascular tone.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700