Derivatives of the approximated electrostatic potentials in unrestricted Hartree–Fock based on the fragment molecular orbital method and an application to polymer radicals
详细信息    查看全文
  • 作者:Hiroya Nakata (1) (2)
    Dmitri G. Fedorov (3)
    Satoshi Yokojima (2) (4)
    Kazuo Kitaura (5)
    Shinichiro Nakamura (2)
  • 关键词:Solvation ; Analytic gradient ; SCZV ; HF calculation ; Macromolecules ; Polymer ; Molecular orbital calculations
  • 刊名:Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta)
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:133
  • 期:5
  • 全文大小:1,526 KB
  • 参考文献:1. Goedecker S (1999) Rev Mod Phys 71:1085
    2. Scuseria GE (1999) J Phys Chem A 103:4782
    3. Li X, Milliam JM, Scuseria GE, Frisch MJ, Schlegel HB (2003) J Chem Phys 119:7651
    4. Mezey PG, Leszczynski J (2011) Linear-scaling techniques in computational chemistry and physics. Springer, New York
    5. Reimers JR (2011) Computational methods for large systems: electronic structure approaches for biotechnology and nanotechnology. Wiley, New York
    6. Gordon MS, Fedorov DG, Pruitt SR, Slipchenko LV (2012) Chem Rev 112:632
    7. Otto P, Ladik J (1975) Chem Phys 8:192
    8. Yang W (1991) Phys Rev Lett 66:1438
    9. Gao JL (1997) J Phys Chem B 101:657
    10. Wang Y, Sosa CP, Cembran A, Truhlar DG, Gao J (2012) J Phys Chem B 116:6781
    11. Korchowiec J, Gu FL, Aoki Y (2005) Int J Quantum Chem 105:875
    12. Aoki Y, Gu FL (2012) Phys Chem Chem Phys 14:7640
    13. Chen XH, Zhang JZH (2004) J Theor Comput Chem 3:277
    14. Hua S, Li W, Li S (2013) Chem Phys Chem 14:108
    15. Gordon MS, Mullin JM, Pruitt SR, Roskop LB, Slipchenko LV, Boatz JA (2009) J Phys Chem B 113:9646
    16. Flick JC, Kosenkov D, Hohenstein EG, Sherrill CD, Slipchenko LV (2012) J Chem Theory Comput 8:2835
    17. Kobayashi M, Yoshikawa T, Nakai H (2010) Chem Phys Lett 500:172
    18. He X, Merz KM (2010) J Chem Theory Comput 6:405
    19. Kobayashi M, Nakai H (2012) Phys Chem Chem Phys 14:7629
    20. Collins MA (2012) Phys Chem Chem Phys 14:7744
    21. Huang L, Massa L (2012) Future Med Chem 4:1479
    22. S?derhjelm P, Kongsted J, Ryde U (2010) J Chem Theory Comput 6:1726
    23. Sahu N, Yeole SD, Gadre SR (2013) J Chem Phys 138:104101
    24. Frank A, M?ller HM, Exner TE (2012) J Chem Theory Comput 8:1480
    25. Kurbanov EK, Leverentz HR, Truhlar DG, Amin EA (2012) J Chem Theory Comput 8:1
    26. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Chem Phys Lett 313:701
    27. Fedorov DG, Kitaura K (2009) The fragment molecular orbital method: practical applications to large molecular systems. CRC Press, Boca Raton, FL
    28. Fedorov DG, Kitaura K (2007) J Phys Chem A 111:6904
    29. Fedorov DG, Nagata T, Kitaura K (2012) Phys Chem Chem Phys 14:7562
    30. Steinmann C, Fedorov DG, Jensen JH (2013) PLoS One 8:e60602
    31. Sugiki SI, Kurita N, Sengoku Y, Sekino H (2003) Chem Phys Lett 382:611
    32. Fedorov DG, Kitaura K (2004) J Chem Phys 121:2483
    33. Fedorov DG, Kitaura K (2005) J Chem Phys 123:134103
    34. Pruitt SR, Fedorov DG, Kitaura K, Gordon MS (2010) J Chem Theory Comput 6:1
    35. Pruitt SR, Fedorov DG, Gordon MS (2012) J Phys Chem A 116:4965
    36. Fedorov DG, Kitaura K (2005) J Chem Phys 122:0541081
    37. Komeiji Y, Mochizuki Y, Nakano T, Mori H (2012) Recent advances in fragment molecular orbital-based molecular dynamics(FMO-MD) simulations. InTech
    38. Nakata H, Fedorov DG, Nagata T, Yokojima S, Ogata K, Kitaura K, Nakamura S (2012) J Chem Phys 137:044110
    39. Fedorov DG, Avramov PV, Jensen JH, Kitaura K (2009) Chem Phys Lett 477:169
    40. Sawada T, Fedorov DG, Kitaura K (2010) J Am Chem Soc 132:16862
    41. Alexeev Y, Mazanetz MP, Ichihara O, Fedorov DG (2012) Curr Top Med Chem 12:2013
    42. Watanabe T, Inadomi Y, Fukuzawa K, Nakano T, Tanaka S, Nilsson L, Nagashima U (2007) J Phys Chem B 111:9621
    43. Carlson PJ, Bose S, Armstrong DW, Hawkins T, Gordon MS, Petrich JW (2012) J Phys Chem B 116:503
    44. Fukunaga H, Fedorov DG, Chiba M, Nii K, Kitaura K (2008) J Phys Chem A 112:10887
    45. Avramov PV, Fedorov DG, Sorokin PB, Sakai S, Entani S, Ohtomo M, Matsumoto?Y, Naramoto H (2012) J Phys Chem Lett 3:2003
    46. Roskop L, Fedorov DG, Gordon MS (2013) Mol Phys 111:1622
    47. Okiyama Y, Tsukamoto T, Watanabe C, Fukuzawa K, Tanaka S, Mochizuki Y (2013) Chem Phys Lett 566:25
    48. Sekino H, Matsumura N, Sengoku Y (2007) Comput Lett 3:423
    49. Gao Q, Yokojima S, Kohno T, Ishida T, Fedorov DG, Kitaura K, Fujihira M, Nakamura S (2007) Chem Phys Lett 445:331
    50. Gao Q, Yokojima S, Fedorov DG, Kitaura K, Sakurai M, Nakamura S (2010) J Chem Theory Comput 6:1428
    51. Fedorov DG, Kitaura K (2007) J Comput Chem 28:222
    52. Fedorov DG, Kitaura K (2012) J Phys Chem A 116:704
    53. Mochizuki Y, Fukuzawa K, Kato A, Tanaka S, Kitaura K, Nakano T (2005) Chem Phys Lett 410:247
    54. Ishikawa T, Mochizuki Y, Amari S, Nakano T, Tokiwa H, Tanaka S, Tanaka K (2007) Theor Chem Acc 118(5-):937
    55. Green MC, Fedorov DG, Kitaura K, Francisco JS, Slipchenko LV (2013) J Chem Phys 138:074111
    56. Nakano T, Kaminuma T, Sato T, Fukuzawa K, Akiyama Y, Uebayasi M, Kitaura K (2002) Chem Phys Lett 351:475
    57. Kitaura K, Sugiki SI, Nakano T, Komeiji Y, Uebayasi M (2001) Chem Phys Lett 336(1,2):163
    58. Nagata T, Brorsen K, Fedorov DG, Kitaura K, Gordon MS (2011) J Chem Phys 134:124115
    59. Nagata T, Fedorov DG, Kitaura K (2009) Chem Phys Lett 475:124
    60. Nagata T, Fedorov DG, Kitaura K (2012) Chem Phys Lett 544:87
    61. Fedorov DG, Ishida T, Uebayasi M, Kitaura K (2007) J Phys Chem A 111:2722
    62. Fedorov DG, Alexeev Y, Kitaura K (2011) J Phys Chem Lett 2:282
    63. Komeiji Y, Nakano T, Fukuzawa K, Ueno Y, Inadomi Y, Nemoto T, Uebayasi M, Fedorov DG, Kitaura K (2003) Chem Phys Lett 372:342
    64. Komeiji Y, Ishikawa T, Mochizuki Y, Yamataka H, Nakano T (2009) J Comput Chem 30:40
    65. Fujita T, Watanabe H, Tanaka S (2009) J Phys Soc Jpn 78:104723
    66. Fujita T, Nakano T, Tanaka S (2011) Chem Phys Lett 506:112
    67. Brorsen KR, Minezawa N, Xu F, Windus TL, Gordon MS (2012) J Chem Theory Comput 8:5008
    68. Nakata H, Nagata T, Fedorov DG, Yokojima S, Kitaura K, Nakamura S (2013) J Chem Phys 138:164103
    69. Sato M, Yamataka H, Komeiji Y, Mochizuki Y, Ishikawa T, Nakano T (2008) J Am Chem Soc 130:2396
    70. Sato M, Yamataka H, Komeiji Y, Mochizuki Y, Nakano T (2010) Chem Eur J 16:6430
    71. Lange AW, Voth GA (2013) J Chem Theory Comput 9(9):4018. doi:10.1021/ct400516x
    72. Xie W, Orozco M, Gao J, Truhlar DG (2009) J Chem Theory Comput 5:459
    73. Ufimtsev IS, Luehr N, Martinez TJ (2011) J Chem Theory Comput 2:1789
    74. Kacar G, Atilgan C, ?zen AS (2010) J Phys Chem C 114:370
    75. Nagaoka M, Ohta Y, Hitomi H (2007) Coord Chem Rev 251:2522
    76. Elliott JA, Paddison SJ (2007) Phys Chem Chem Phys 9:2602
    77. Karttunen M, Vattulainen I, Lukkarinen A (2004) Novel methods in soft matter simulations. Springer, Berlin
    78. Morales G, Martinez R (2009) J Phys Chem A 113:8683
    79. Zade SS, Bendikov M (2007) Chem Eur J 13:3688
    80. Suhai S (1980) J Chem Phys 73:3843
    81. Hirata S (1998) Phys Rev B 57:11994
    82. Aoki Y, Imamura A, Sasaki T (1988) Bull Chem Soc Jpn 61:1063
    83. Hirata S (2009) Phys Chem Chem Phys 11:8397
    84. Moscatelli D, Cavallotti C, Morbidelli M (2006) Macromolecules 39:9641
    85. Xie W, Song L, Truhlar DG, Gao J (2008) J Chem Phys 128:234108
    86. Hratchian HP, Parandekar PV, Raghavachari K, Frisch MJ, Vreven T (2008) J Chem Phys 128:034107
    87. Mayhall NJ, Raghavachari K, Hratchian HP (2010) J Chem Phys 132:114107
    88. Baker J, Kessi A, Delley B (1996) J Chem Phys 105:192
    89. Nagata T, Fedorov DG, Kitaura K (2010) Chem Phys Lett 492:302
    90. Yamaguchi Y, Schaefer HF III, Osamura Y, Goddard J (1994) A new dimension to quantum chemistry: analytical derivative methods in ab initio molecular electronic structure theory. Oxford University Press, New York
    91. Handy NC, Schaefer HF III (1984) J Chem Phys 81:5031
    92. Ochsenfeld C, Gordon MS (1997) Chem Phys Lett 270:399
    93. Clayden J, Greeves N, Warren S, Wothers P (2001) Organic chemistry. Oxford University Press, New York
    94. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) Comput Phys Commun 181:1477
    95. Wang J, Cieplak P, Kollman PA (2000) J Comput Chem 21:1049
    96. Schmidt NW, Baldridge KK, Baldridge JA, Boatz JA, Elbert ST, Gordon MS, Jensen JJ, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347
    97. Fedorov DG, Kitaura K (2004) J Chem Phys 120(15):6832
    98. Fedorov DG, Olson RM, Kitaura K, Gordon MS, Koseki S (2004) J Comput Chem 25:872
    99. Andersen HC (1983) J Comput Phys 52:24
    100. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, New York
    101. Benoit D, Hawker CJ, Huang EE, Lin Z, Russell TP (2000) Macromolecules 33:1505
    102. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104
    103. Fedorov DG, Kitaura K (2006) Theoretical development of the fragment molecular orbital (FMO) method, chap. 1. Elsevier, Amsterdam, pp 3-8
  • 作者单位:Hiroya Nakata (1) (2)
    Dmitri G. Fedorov (3)
    Satoshi Yokojima (2) (4)
    Kazuo Kitaura (5)
    Shinichiro Nakamura (2)

    1. Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
    2. Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
    3. NRI, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
    4. Tokyo University of Pharmacy and Life Sciences, 1423-1 Horinouchi, Hachiouji-shi, Tokyo, 192-0392, Japan
    5. Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
  • ISSN:1432-2234
文摘
The analytic energy gradient for the point charge approximation of the embedding potential is derived in the framework of unrestricted Hartree–Fock based on the fragment molecular orbital method (FMO). For this goal, we derive the necessary coupled-perturbed unrestricted Hartree–Fock equations, describing the response terms arising from the use of embedding atomic charges in dimer calculations. By a comparison to numerical gradients and with the aid of molecular dynamics, we show that the gradients have a high accuracy. A speed-up of the factor 7.3 is obtained for the largest system, when approximated potentials are used relative to the exact two-electron embedding. We apply the FMO method to polymer radicals and show that it has satisfactory accuracy in reproducing the geometries and energies of polymer radical reactions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700