An experimental assessment of in silico haplotype association mapping in laboratory mice
详细信息    查看全文
  • 作者:Sarah L Burgess-Herbert (1) (2)
    Shirng-Wern Tsaih (1)
    Ioannis M Stylianou (1) (3)
    Kenneth Walsh (1)
    Allison J Cox (1)
    Beverly Paigen (1)
  • 刊名:BMC Genetics
  • 出版年:2009
  • 出版时间:December 2009
  • 年:2009
  • 卷:10
  • 期:1
  • 全文大小:1591KB
  • 参考文献:1. Paterson AH: Molecular dissection of quantitative traits: progress and prospects. / Genome Research 1995, 5: 321-33. CrossRef
    2. Burgess-Herbert SL, Cox A, Tsaih S-W, Paigen B: Practical applications of the bioinformatics toolbox for narrowing quantitative trait loci. / Genetics 2008,180(4): 2227-235. CrossRef
    3. DiPetrillo K, Wang X, Stylianou IM, Paigen B: Bioinformatics toolbox for narrowing rodent quantitative trait loci. / Trends in Genetics 2005,21(12): 683-91. CrossRef
    4. Flint J, Valdar W, Shifman S, Mott R: Strategies for mapping and cloning quantitative trait genes in rodents. / Nature Reviews Genetics 2005,6(4): 271-86. CrossRef
    5. Grupe A: In silico mapping of complex disease-related traits in mice. / Science 2001, 292: 1915-918. CrossRef
    6. Pletcher MT, McClurg P, Batalov S, Su AI, Barnes SW, Lagler E, Korstanje R, Wang X, Nusskern D, Bogue MA, / et al.: Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse. / PLoS Biology 2004,2(12): e393. CrossRef
    7. Chesler EJ, Rodriguez-Zas SL, Mogil JS, Usuka J, Grupe A, Germer S, Aud D, Belknap JK, Klein RF, Ahluwalia MK, / et al.: In silico mapping of mouse quantitative trait loci. / Science 2001, 294: 2423. CrossRef
    8. Cervino ACL, Darvasi A, Fallahi M, Mader CC, Tsinoremas NF: An integrated in silico gene mapping strategy in inbred mice. / Genetics 2007, 175: 321-33. CrossRef
    9. McClurg P, Pletcher MT, Wiltshire T, Sue AI: Comparative analysis of haplotype association mapping algorithms. / BMC Bioinformatics 2006, 7: 61. CrossRef
    10. Payseur BA, Place M: Prospects for association mapping in classical inbred mouse strains. / Genetics 2007. genetics.106.067868
    11. Zhang J, Hunter KW, Gandolph M, Rowe WL, Finney RP, Kelley JM, Edmonson M, Buetow KH: A high-resolution multistrain haplotype analysis of laboratory mouse genome reveals three distinctive genetic variation patterns. / Genome Research 2005,15(2): 241-49. CrossRef
    12. Cervino AC, Li G, Edwards S, Zhu J, Laurie C, Tokiwa G, Lum PY, Wang S, Castellini LW, Lusis AJ, / et al.: Integrating QTL and high-density SNP analyses in mice to identify Insig2 as a susceptibility gene for plasma cholesterol levels. / Genomics 2005,86(5): 505-17. CrossRef
    13. Hillebrandt S, Wasmuth HE, Weiskirchen R, Hellerbrand C, Keppeler H, Werth A, Schirin-Sokhan R, Wilkens G, Geier A, Lorenzen J, / et al.: Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. / Nat Genet 2005,37(8): 835-43. CrossRef
    14. Rangnekar AS, Lammert F, Igolnikov A, Green RM: Quantitative trait loci analysis of mice administered the methionine-choline deficient dietary model of experimental steatohepatitis. / Liver International 2006, 26: 1000-005. CrossRef
    15. Smith JD, James D, Dansky HM, Wittkowski KM, Moore KJ, Breslow JL: In silico quantitative trait locus map for atherosclerosis susceptibility in apolipoprotein E-deficient mice. / Arterioscler Thromb Vasc Biol 2003,23(1): 117-22. CrossRef
    16. Mhyre TR, Chesler EJ, Thiruchelvam M, Lungu C, Cory-Slechta DA, Fry JD, Richfield EK: Heritability, correlations and in silico mapping of locomotor behavior and neurochemistry in inbred strains of mice. / Genes, Brain & Behavior 2005,4(4): 209. CrossRef
    17. Zhang Y-M, Mao Y, Xie C, Smith H, Luo L, Xu S: Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize ( Zea mays L. ). / Genetics 2005, 169: 2267-275. CrossRef
    18. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E: Efficient control of population structure in model organism association mapping. / Genetics 2008,178(3): 1709-723. CrossRef
    19. Peters LL, Lambert AJ, Zhang W, Churchill GA, Brugnara C, Platt OS: Quantitative trait loci for baseline erythroid traits. / Mammalian Genome 2006, 17: 298-09. CrossRef
    20. Wang X, Paigen B: Genetics of variation in HDL cholesterol in humans and mice. / Circ Res 2005,96(1): 27-2. CrossRef
    21. Stylianou IM, Langley SR, Walsh K, Chen Y, Revenu C, Paigen B: Differences in DBA/1J and DBA/2J reveal lipid QTL genes. / J Lipid Res 2008,49(11): 2402-413. CrossRef
    22. Manenti G, Galvan A, Pettinicchio A, Trincucci G, Spada E, Zolin A, Milani S, Gonzalez-Neira A, Dragani TA: Mouse genome-wide association mapping needs linkage analysis to avoid false-positive Loci. / PLoS Genet 2009,5(1): e1000331. CrossRef
    23. Gwynn B, Korsgren C, Cohen CM, ciciotte SL, Peters LL: The gene encoding protein 4.2 is distinct from the mouse platelet storage pool deficiency mutation pallid. / Genomics 1997,42(3): 532-35. CrossRef
    24. Korsgren C, Cohen CM: cDNA sequence, gene structure, and properties of murine pallidin (band 4.2), the protein implicated in the murine pallid mutation. / Genomics 1994, 21: 478-85. CrossRef
    25. Peters LL, Jindel HK, Gwynn B, Korsgren C, John KM, Lux SE, Mohandas N, Cohen CM, Cho MR, Golan DE, / et al.: Mild spherocytosis and altered red cell ion transport in protein 4.2-null mice. / The Journal of Clinical Investigation 1999,103(11): 1527-537. CrossRef
    26. Yawata Y: Red cell membrane protein band 4.2: phenotypic, genetic and electron microscopic aspects. / Biochim Biophys Acta 1994, 1204: 131-48. CrossRef
    27. Szatkiewicz JP, Beane GL, Ding Y, Hutchins L, Pardo-Manuel de Villena F, Churchill GA: An imputed genotype resource for the laboratory mouse. / Mamm Genome 2008,19(3): 199-08. CrossRef
    28. The Complex Trait Consortium: The Collaborative Cross, a community resource for the genetic analysis of complex traits. / Nature Genetics 2004, 36: 1133-137. CrossRef
    29. Bogue MA, Grubb SC, Maddatu TP, Bult CJ: Mouse Phenome Database (MPD). / Nucl Acids Res 2007,35(suppl_1): D643-49. CrossRef
    30. Mouse Phenome Database[http://www.jax.org/phenome]
    31. The Jackson Laboratory: Health status reports[http://jaxmice.jax.org/health]
    32. The Center for Genome Dynamics at The Jackson Laboratory: Resources [http://cgd.jax.org/datasets/phenotype.shtml]
    33. Westfall P, Young S: Resampling-based multiple testing: examples and methods for p -value adjustment. New York: Wiley 1993.
    34. Churchill GA, Doerge RW: Empirical threshold values for quantitative trait mapping. / Genetics 1994, 138: 963-71.
    35. The Mathworks - MATLAB and Simulink for Technical Computing [http://www.mathworks.com]
    36. Doorenbos C, Tsaih S-W, Sheehan S, Ishimori N, Navis G, Churchill G, DiPetrillo K, Korstanje R: Quantitative trait loci for urinary albumin in crosses between C57BL/6J and A/J inbred mice in the presence and absence of Apoe . / Genetics 2008,179(1): 693-99. CrossRef
    37. Stylianou IM, Tsaih S-W, DiPetrillo K, Ishimori N, Li R, Paigen B, Churchill GA: Complex genetic architecture revealed by analysis of HDL in chromosome substitution strains and F2 crosses. / Genetics 2006. genetics.106.059717
    38. Raymond M, Rousset F: GENEPOP (version1.2): population genetics software for exact tests and ecumenicism. / Journal of Heredity 1995, 86: 248-49.
    39. GENEPOP on the Web [http://genepop.curtin.edu.au]
  • 作者单位:Sarah L Burgess-Herbert (1) (2)
    Shirng-Wern Tsaih (1)
    Ioannis M Stylianou (1) (3)
    Kenneth Walsh (1)
    Allison J Cox (1)
    Beverly Paigen (1)

    1. The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
    2. San Diego Zoo Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA, 92027, USA
    3. University of Pennsylvania, School of Medicine, Institute for Translational Medicine and Therapeutics, Philadelphia, PA, 19104, USA
文摘
Background To assess the utility of haplotype association mapping (HAM) as a quantitative trait locus (QTL) discovery tool, we conducted HAM analyses for red blood cell count (RBC) and high density lipoprotein cholesterol (HDL) in mice. We then experimentally tested each HAM QTL using published crosses or new F2 intercrosses guided by the haplotype at the HAM peaks. Results The HAM for RBC, using 33 classic inbred lines, revealed 8 QTLs; 2 of these were true positives as shown by published crosses. A HAM-guided (C57BL/6J × CBA/J)F2 intercross we carried out verified 2 more as true positives and 4 as false positives. The HAM for HDL, using 81 strains including recombinant inbred lines and chromosome substitution strains, detected 46 QTLs. Of these, 36 were true positives as shown by published crosses. A HAM-guided (C57BL/6J × A/J)F2 intercross that we carried out verified 2 more as true positives and 8 as false positives. By testing each HAM QTL for RBC and HDL, we demonstrated that 78% of the 54 HAM peaks were true positives and 22% were false positives. Interestingly, all false positives were in significant allelic association with one or more real QTL. Conclusion Because type I errors (false positives) can be detected experimentally, we conclude that HAM is useful for QTL detection and narrowing. We advocate the powerful and economical combined approach demonstrated here: the use of HAM for QTL discovery, followed by mitigation of the false positive problem by testing the HAM-predicted QTLs with small HAM-guided experimental crosses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700