Thermal co-reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology
详细信息    查看全文
  • 作者:Nandita Dasgupta ; Shivendu Ranjan
  • 关键词:Nanoparticle ; Size variation ; Thermal co ; reduction ; Characterization ; Microbial toxicology ; Cytotoxicology
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:23
  • 期:5
  • 页码:4149-4163
  • 全文大小:1,542 KB
  • 参考文献:Agnihotri S, Soumyo M, Suparna M (2013) Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Nanoscale 5:7328–7340CrossRef
    Amany AE-K, Sanaa FGE-R (2012) Effect of reducing and protecting agents on size of silver nanoparticles and their anti-bacterial activity. Der Pharm Chem 4:53–65
    Andre N, Tian X, Lutz M, Ning L (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRef
    Asghari S, Seyed AJ, Ji HL, Yong SK, Yong BJ, Hyun JC, Min CM, Yu IJ (2012) Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotechnol 10:14–25CrossRef
    Avadi MR, Sadeghi AMM, Tahzibi A, Bayati K, Pouladzadeh M, Zohuriaan-Mehrd MJ, Rafiee-Tehrani M (2004) Diethylmethyl chitosan as an antimicrobial agent: synthesis, characterization and antibacterial effects. Eur Polym J 40:1355–1361CrossRef
    Beer C, Rasmus F, Yuya H, Duncan SS, Herman A (2012) Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicol Lett 208:286–292CrossRef
    Bogumiła R, Andrea H, Andreas L, Kenneth AD, Iseult L (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6(6):2295–2350CrossRef
    Borchert H, Shevchenko EV, Robert A, Mekis I, Kornowski A, Grubel G, Weller H (2005) Langmuir 21:1931–1936CrossRef
    Case CL, Johnson TR (1984) Laboratory experiments in microbiology. Benjamin Cummings Pub Inc, California, pp 126–129
    Chen M, Yang Z, Wu H, Pan X, Xie X, Wu C (2011) Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel. Int J Nanomedicine 6:2873–2877
    Christiane B, Rasmus F, Yuya H, Duncan SS, Herman A (2012) Toxicity of silver nanoparticles-nanoparticle or silver ion? Toxicol Lett 208:286–292CrossRef
    Chun-Nam L, Chi-Ming H, Rong C, Qing-Yu H, Wing-Yiu Y, Hongzhe S, Paul K-HT, Jen-Fu C, Chi-Ming C (2007) Silver nanoparticles: partial oxidation and antibacterial activities. JBIC J Biol Inorg Chem 12:527–534CrossRef
    Culity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd Edition, Prentice-Hall Inc., 167–171
    Dasgupta N, Ranjan S, Mundekkad D, Chidambaram R, Rishi S, Kumar A (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400. doi:10.​1016/​j.​foodres.​2015.​01.​005 CrossRef
    Dasgupta N, Ranjan S, Saha P, Rahul J, Swati M, Saleh MAAM (2012) Antibacterial Activity of Leaf Extract of Mexican Marigold (Tagetes erecta) Against Different Gram Positive and Gram Negative Bacterial Strains. J Pharm Res 5(8):4201–4203
    El-Nour KMMA, Ala’a E, Abdulrhman A-W, Ammar AAR (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3(3):135–140CrossRef
    Ericka R-L, Ramón I-P, Rosa EN, Ronaldo H-U, Judith T, Claudia I-P, Amir M (2013) Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res Lett 8:318–326CrossRef
    Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 190:156–162CrossRef
    Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85:743–750CrossRef
    Hadrup N, Lam HR (2014) Oral toxicity of silver ions, silver nanoparticles and colloidal silver–a review. Regul Toxicol Pharmacol 68(1):1–7CrossRef
    Hartshorn RE, Thomas EC, Anklam K, Lopez-Benavides MG, Buchalova M, Hemling TC, Döpfer D (2013) Short communication: Minimum bactericidal concentration of disinfectants evaluated for bovine digital dermatitis-associated Treponema phagedenis-like spirochetes. J Dairy Sci 96(5):3034–3038CrossRef
    Hatchett DW, White HS (1996) Electrochemistry of sulfur adlayers on the low-index faces of silver. J Phys Chem 100:9854–9859CrossRef
    Humberto HL, Nilda VA-N, Liliana-del CIT, Cristina RP (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26:615–621CrossRef
    Jayesh PR, Arup KC, Siddhartha PD, Suparna M (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716CrossRef
    Jenkins R, Snyder RL (1996) Introduction to X-ray powder diffractometry. John Wiley & sons Inc., 89–91
    Jung Y, Kyoung-Ho S, Jeong EC, Hyung-sook K, Nak-Hyun K, Taek Soo K, Pyoeng GC, Jae-Yong C, Wan BP, Ji HB, Eu SK, Kyoung UP, Hong BK, Sang WP, Nam JK, Myoung-don O (2014) Area under the concentration—time curve to minimum inhibitory concentration ratio as a predictor of vancomycin treatment outcome in methicillin-resistant Staphylococcus aureus bacteraemia. Int J Antimicrob Agents 43(2):179–183CrossRef
    Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY (2009) Oxidative stress dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 23:1076–1084CrossRef
    Kingsley DJ, Shivendu R, Nandita D, Saha P (2013) Nanotechnology for tissue engineering: need, techniques and applications. J Pharm Res 7(2):200–204
    Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011a) Cellular response to metal oxide nanoparticles in bacteria. J Biomed Nanotechnol 7(1):102–103CrossRef
    Kumar A, Dhawan A, Shanker R (2011b) The need for novel approaches in ecotoxicity of engineered nanomaterials. J Biomed Nanotechnol 7(1):79–80CrossRef
    Kumar A, Alok KP, Shashi SS, Rishi S, Alok D (2011c) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. 51(10): 1872–1881
    Lima DR, Seabra AB, Durán N (2012) Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol 32(11):867–879CrossRef
    Ma R, Levard C, Marinakos SM, Cheng Y, Liu J, Michel FM, Brown GE, Lowry GV (2012) Environ Sci Technol 46:752–759CrossRef
    Majdalawieh A, Kanan MC, El-Kadri O, Kanan SM (2014) Recent advances in gold and silver nanoparticles: synthesis and applications. J Nanosci Nanotechnol 14(7):4757–4780CrossRef
    Martínez-Castañón GA, Niño-Martínez N, Martínez-Gutierrez F, Martínez-Mendoza JR, Facundo R (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10:1343–1348CrossRef
    Mélanie A, Jérôme R, Jean-Yves B, Gregory VL, Jean-Pierre J, Mark RW (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 2009(4):634–641
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Jose MY (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRef
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRef
    Naomi L (2008) Nanosilver toxicity: ions, nanoparticles - or both? Environ Sci Technol 42:8617–8617CrossRef
    Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964CrossRef
    Prabhu S, Eldho KP (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32–42CrossRef
    Ranjan S, Dasgupta N, Roy AC, Samuel MS, Chidambaram R, Shanker R, Kumar A (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16:2464. doi:10.​1007/​s11051-014-2464-5 CrossRef
    Ranjan S, Dasgupta N, Saha P, Rakshit M, Ramalingam C (2012) Comparative study of antibacterial activity of garlic and cinnamon at different temperature and its application on preservation of fish. Adv Appl Sci Res 3(1):495–501
    Sharma V, Kumar A, Dhawan A (2012) Nanomaterials: exposure, effects and toxicity assessment. Proc Natl Acad Sci India Section B 88(1):3–11CrossRef
    Shekhar A, Soumyo M, Suparna M (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4:3974–3983CrossRef
    Sireesh BM, Badal KM, Shivendu R, Nandita D (2015) Diastase assisted green synthesis of size-controllable gold nanoparticles. RSC Adv 5:26727–26733CrossRef
    Solanki JN, Murthy ZVP (2011) Controlled size silver nanoparticles synthesis with water-in-oil microemulsion method: a topical review. Ind Eng Chem Res 50(22):12311–12323CrossRef
    Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interf Sci 275:177–182CrossRef
    Stepanov AL (2010) synthesis of silver nanoparticles in dielectric matrix by ion implantation: a review. Synthesi of silver na oparticles in diel ctric matrix by ion implanta ion: a review. Rev Adv Mater Sci 26:1–29
    Sukdeb P, Yu KT, Joon MS (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720CrossRef
    Svitlana C, Matthias E (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed 52(6):1636–1653CrossRef
    Taner M, Nilufer S, Isik GY, Sefik S (2011) Synthesis, characterization and antibacterial investigation of silver-copper nanoalloys. J Mater Chem 21:13150–13154CrossRef
    Torrico M, Giménez MJ, González N, Alou L, Sevillano D, Cafini F, Prieto J, Cleeland R, Aguilar L (2010) Bactericidal activity of daptomycin versus vancomycin in the presence of human albumin against vancomycin-susceptible but tolerant methicillin-resistant Staphylococcus aureus (MRSA) with daptomycin minimum inhibitory concentrations of 1–2 μg/mL. Int J Antimicrob Agents 35(2):131–137CrossRef
    Vinicius SC, Patrick VQ, Adriany A, Fernando LP, Graciely GG, Antonio CT, Ana CM, Yvonne PM, José RC, Selma ASK, Carla E, José RSAL, Durcilene S, José RDSJ (2014) Collagen-based silver nanoparticles for biological applications: synthesis and characterization. J Nanobiotechnol 12:36–45CrossRef
    Virginia DL, Luciane FDO, Kaliandra DAG, Jörg K, Mateus BC (2011) Size-selective silver nanoparticles: future of biomedical devices with enhanced bactericidal properties. J Mater Chem 21:12267–12273CrossRef
    Wen-Ru L, Xiao-Bao X, Qing-Shan S, Hai-Yan Z, You-Sheng OU-Y, Yi-Ben C (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122CrossRef
    Williams DN, Ehrman SH, Holoman TRP (2006) Evaluation of the microbial growth response to inorganic nanoparticles. J Nanobiotechnol 4:3CrossRef
    Yanagi H, Ohno S, Kamiya T (2006) Magnetic and carrier transport properties of Mn-doped p-type semiconductor LaCuOSe: an investigation of the origin of ferromagnetism. J Appl Phys 100:033717CrossRef
    Yugang S (2013) Controlled synthesis of colloidal silver nanoparticles in organic solutions: empirical rules for nucleation engineering. Chem Soc Rev 42:2497–2511CrossRef
    Zhong L, Kaifeng R, Ju L, Hao Y, Rong C (2013) Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J Mater Sci Mater Med 24:1465–1471CrossRef
  • 作者单位:Nandita Dasgupta (1)
    Shivendu Ranjan (1) (2)
    Bhavapriya Rajendran (3)
    Venkatraman Manickam (3)
    Chidambaram Ramalingam (1)
    Ganesh S. Avadhani (4)
    Ashutosh Kumar (5)

    1. Nano-food Research Group, Instrumental and Food Analysis Laboratory, Industrial Biotechnology Division, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
    2. Research Wing, Veer Kunwar Singh Memorial Trust, Chapra, Bihar, India
    3. Division of Biomedical Sciences, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
    4. Department of Material Engineering, Indian Institute of Science, Bangalore, Karnataka, India
    5. Institute of Life Sciences, School of Science and Technology, Ahmedabad University, Ahmedabad, Gujarat, India
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
文摘
In recent years, silver nanoparticles (AgNPs) have attracted considerable interest in the field of food, agriculture and pharmaceuticals mainly due to its antibacterial activity. AgNPs have also been reported to possess toxic behavior. The toxicological behavior of nanomaterials largely depends on its size and shape which ultimately depend on synthetic protocol. A systematic and detailed analysis for size variation of AgNP by thermal co-reduction approach and its efficacy toward microbial and cellular toxicological behavior is presented here. With the focus to explore the size-dependent toxicological variation, two different-sized NPs have been synthesized, i.e., 60 nm (Ag60) and 85 nm (Ag85). A detailed microbial toxicological evaluation has been performed by analyzing minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), diameter of inhibition zone (DIZ), growth kinetics (GrK), and death kinetics (DeK). Comparative cytotoxicological behavior was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. It has been concluded by this study that the size of AgNPs can be varied, by varying the concentration of reactants and temperature called as “thermal co-reduction” approach, which is one of the suitable approaches to meet the same. Also, the smaller AgNP has shown more microbial and cellular toxicity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700