Investigation of FE model size definition for surface coating application
详细信息    查看全文
  • 作者:Yanhong Chen (1)
    Weimin Zhuang (1)
    Shiwen Wang (2)
    Jianguo Lin (2)
    Daniel Balint (2)
    Debin Shan (3)
  • 关键词:surface coating system ; continuum damage mechanics ; failure prediction ; finite element analysis
  • 刊名:Chinese Journal of Mechanical Engineering
  • 出版年:2012
  • 出版时间:September 2012
  • 年:2012
  • 卷:25
  • 期:5
  • 页码:860-867
  • 全文大小:823KB
  • 参考文献:1. OKUMIYA M, GRIEPENTROG M. Mechanical properties and tribological behavior of TiN-CrAlN and CrN-CrAlN multilayer coatings[J]. / Surf. Coat. Technol., 1999, 112(1鈥?): 123鈥?28. CrossRef
    2. LU Xinchun, LI Ming, TANG Xiaoming, et al. Micromechanical properties of hydrogenated diamond-like carbon multilayers[J]. / Surf. Coat. Technol., 2006, 201(3鈥?): 1 679鈥? 684.
    3. IBRAHIM A, LIMA R S, BERNDT C C, et al. Fatigue and mechanical properties of nanostructured and conventional titania (TiO2) thermal spray coatings[J]. / Surf. Coat. Technol., 2007, 201(16鈥?7): 7 589鈥? 596.
    4. PARK H S, KAPPL H, LEE K H, et al. Structure modification of magnetron-sputtered CrN coatings by intermediate plasma etching steps[J]. / Surf. Coat. Technol., 2000, 133鈥?34: 176鈥?80. CrossRef
    5. TRTICA M S, TARASENKO V F, GAKOVI膯 B M, et al. Surface modifications of TiN coating by pulsed TEA CO2 and XeCl lasers[J]. / Appl. Surf. Sci., 2005, 252(2): 474鈥?82. CrossRef
    6. ZENKER R, SACHER G, BUCHWALDER A, et al. Hybrid technology hard coating-Electron beam surface hardening[J]. / Surf. Coat. Technol., 2007, 202(4鈥?): 804鈥?08. CrossRef
    7. NAVIN艩EK B, PANJAN P, IMLL艩EV I. Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures[J]. / Surf. Coat. Technol., 1997, 97(1鈥?): 182鈥?91. CrossRef
    8. RHYS-JONES T N. The use of thermally sprayed coatings for compressor and turbine applications in aero engines[J]. / Surf. Coat. Technol., 1990, 42(1): 1鈥?1. CrossRef
    9. WANG Wenchao. Application of a high temperature self-lubricating composite coating on steam turbine components[J]. / Surf. Coat. Technol., 2007, 177鈥?78: 12鈥?7.
    10. XIE Y, HAWTHORNE M. A model for compressive coating stresses in the scratch adhesion test[J]. / Surf. Coat. Technol., 2001, 141(1): 15鈥?5. CrossRef
    11. HOLMBERG K, LAUKKANEN A, RONKAINEN H, et al. A model for stresses, crack generation and fracture toughness calculation in scratched TiN-coated steel surfaces[J]. / Wear, 2003, 254(3鈥?): 278鈥?91. CrossRef
    12. LUO J F, LIU Y J, BERGER E J. Interfacial stress analysis for multi-coating systems using an advanced boundary element method[J]. / Comput. Mech., 2000, 24(6): 448鈥?55. CrossRef
    13. HAI H C, CHAN H M, NIED H F. Hertzian contact behavior of alumina-based trilayer composites experimental observation and FEM analysis[J]. / Acta Mater., 2001, 49(13): 2 453鈥? 461.
    14. ZHANG X C, XU B S, WANG H D, et al. Hertzian contact response of single-layer, functionally graded and sandwich coatings[J]. / Mater. Des., 2007, 28(1): 47鈥?4. CrossRef
    15. GREENWOOD J A, WILLIAMSON J B P. The contact of nominally flat surfaces[J]. / Proc. Royal Soc. London, 1966, A295(1 442): 300鈥?19.
    16. ADAMS G G, NOSONOVSKY M. Contact modeling-forces[J]. / Tribol. Int., 2000, 33(5鈥?): 431鈥?42. CrossRef
    17. SAYLES R S. Basic principles of rough surface contact analysis using numerical methods[J]. / Tribol. Int., 1996, 29(8): 639鈥?50. CrossRef
    18. LUO J, DONG H, BELL T. Model-based contact fatigue design of surface engineered titanium gears[J]. / Comput. Mater. Sci., 2006, 35(4): 447鈥?57. CrossRef
    19. SOUZA R M, SINATORA A, MUSTOE G G W, et al. Numerical and experimental study of the circular cracks observed at the contact edges of the indentations of coated systems with soft substrates[J]. / Wear, 2001, 251(1鈥?2): 1 337鈥? 346.
    20. ZHANG Yaoming, GU Yang, CHEN J T. Stress analysis for multilayered coating systems using semi-analytical BEM with geometric non-linearities[J]. / Comput. Mech., 2011, 47(5): 493鈥?04. CrossRef
    21. LIN J, HAYHURST D R, DYSON B F. A new design of uniaxial test piece with slit extensometer ridges for improved accuracy of strain measurement[J]. / Int. J. of Mech. Sci., 1993, 35(1): 63鈥?8. CrossRef
    22. WANG S, LIN J, BALINT D. Modelling of failure features for TiN coatings with different substrate materials[J]. / Journal of Multiscale Modeling, 2011, 3(1鈥?): 49鈥?4. CrossRef
    23. LIN J, LIU Y, FARRUGIA D C J, et al. Development of dislocation based-unified material model for simulating microstructure evolution in multipass hot rolling[J]. / Philos. Mag. A, 2005, 85(18): 1 967鈥? 987.
    24. HUANG Z. / The mechanism and control theory of the parallel robot[M]. Beijing: China Machine Press, 1997. (in Chinese)
  • 作者单位:Yanhong Chen (1)
    Weimin Zhuang (1)
    Shiwen Wang (2)
    Jianguo Lin (2)
    Daniel Balint (2)
    Debin Shan (3)

    1. State Key Laboratory of Automotive Dynamic Simulation, Jilin University, Changchun, 130022, China
    2. Department of Mechanical Engineering, Imperial College, London, SW7 2AZ, UK
    3. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
  • ISSN:2192-8258
文摘
An efficient prediction mechanical performance of coating structures has been a constant concern since the dawn of surface engineering. However, predictive models presented by initial research are normally based on traditional solid mechanics, and thus cannot predict coating performance accurately. Also, the high computational costs that originate from the exclusive structure of surface coating systems (a big difference in the order of coating and substrate) are not well addressed by these models. To fill the needs for accurate prediction and low computational costs, a multi-axial continuum damage mechanics (CDM)-based constitutive model is introduced for the investigation of the load bearing capacity and fracture properties of coatings. Material parameters within the proposed constitutive model are determined for a typical coating (TiN) and substrate (Cu) system. An efficient numerical subroutine is developed to implement the determined constitutive model into the commercial FE solver, ABAQUS, through the user-defined subroutine, VUMAT. By changing the geometrical sizes of FE models, a series of computations are carried out to investigate (1) loading features, (2) stress distributions, and (3) failure features of the coating system. The results show that there is a critical displacement corresponding to each FE model size, and only if the applied normal loading displacement is smaller than the critical displacement, a reasonable prediction can be achieved. Finally, a 3D map of the critical displacement is generated to provide guidance for users to determine an FE model with suitable geometrical size for surface coating simulations. This paper presents an effective modelling approach for the prediction of mechanical performance of surface coatings.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700