Production of medium-chain volatile flavour esters in Pichia pastoris whole-cell biocatalysts with extracellular expression of Saccharomyces cerevisiae acyl-CoA:ethanol O-acyltransferase Eht1 or Eeb1
详细信息    查看全文
  • 作者:Shiwen Zhuang ; Junshu Fu ; Chris Powell ; Jinhai Huang ; Yihe Xia…
  • 关键词:Yeast ; Biosynthesis ; Ester ; Enzyme ; Integrated
  • 刊名:SpringerPlus
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:4
  • 期:1
  • 全文大小:1236KB
  • 参考文献:Adachi S, Kobayashi T (2005) Synthesis of esters by immobilized-lipase-catalyzed condensation reaction of sugars and fatty acids in water-miscible organic solvent. J Biosci Bioeng 99:87鈥?4CrossRef
    Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98:5301鈥?317CrossRef
    Arcos JA, Bernabe M, Otero C (1998) Quantitative enzymatic production of 6-O-acylglucose esters. Biotechnol Bioeng 57:505鈥?09CrossRef
    Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA et al (2002) Short protocols in molecular biology. Wiley, New York
    Brault G, Shareck F, Hurtubise Y, Lepine F, Doucet N (2014) Short-chain flavor ester synthesis in organic media by an E. coli whole-cell biocatalyst expressing a newly characterized heterologous lipase. PLoS One 9:e91872CrossRef
    Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45鈥?6CrossRef
    Chen Y, Li F, Guo J, Liu G, Guo X, Xiao D (2014) Enhanced ethyl caproate production of Chinese liquor yeast by overexpressing EHT1 with deleted FAA1. J Ind Microbiol Biotechnol 41:563鈥?72CrossRef
    Cheong MW, Lee JY, Liu SQ, Zhou W, Nie Y, Kleine-Benne E (2013) Simultaneous quantitation of volatile compounds in citrus beverage through stir bar sorptive extraction coupled with thermal desorption-programmed temperature vaporization. Talanta 107:118鈥?26CrossRef
    Choder M (1991) A general topoisomerase I-dependent transcriptional repression in the stationary phase in yeast. Genes Dev 5:2315鈥?326CrossRef
    Descours E, Hambleton A, Kurek M, Debeaufort F, Voilley A, Seuvre AM (2013) Aroma behaviour during steam cooking within a potato starch-based model matrix. Carbohydr Polym 95:560鈥?68CrossRef
    Gao B, Su E, Lin J, Jiang Z, Ma Y, Wei D (2009) Development of recombinant Escherichia coli whole-cell biocatalyst expressing a novel alkaline lipase-coding gene from Proteus sp. for biodiesel production. J Biotechnol 139:169鈥?75CrossRef
    Guo D, Jin Z, Xu Y, Wang P, Lin Y, Han S et al (2015) Scaling-up the synthesis of myristate glucose ester catalyzed by a CALB-displaying Pichia pastoris whole-cell biocatalyst. Enzyme Microb Technol 75鈥?6:30鈥?6CrossRef
    Gurkan C, Ellar DJ (2005) Recombinant production of bacterial toxins and their derivatives in the methylotrophic yeast Pichia pastoris. Microb Cell Fact 4:33CrossRef
    Huang J, Zhuang S, Fu J (2010) Analysis of aroma compounds of different yeast strains & its molecular identification by bioinformatics. Proceedings of International Conference on Computer and Communication Technologies in Agriculture Engineering, pp 25鈥?0
    Huang JH, Zhuang SW, Fu JS, Wang CY, Sun YH, Wang YF (2010) Analysis of aroma compounds of different yeast strains & its molecular identification by bioinformatics. International Conference on Computer and Communication Technologies in Agriculture Engineering, pp 25-30
    Jin Z, Ntwali J, Han SY, Zheng SP, Lin Y (2012) Production of flavor esters catalyzed by CALB-displaying Pichia pastoris whole-cells in a batch reactor. J Biotechnol 159:108鈥?14CrossRef
    Jin Z, Liang S, Zhang X, Han S, Ren C, Lin Y et al (2013) Synthesis of fructose laurate esters catalyzed by a CALB-displaying Pichia pastoris whole-cell biocatalyst in a non-aqueous system. Biotechnol Bioprocess Eng 18:365鈥?74CrossRef
    Knight MJ, Bull ID, Curnow P (2014) The yeast enzyme Eht1 is an octanoyl-CoA:ethanol acyltransferase that also functions as a thioesterase. Yeast 31:463鈥?74
    Larsen MW, Bornscheuer UT, Hult K (2008) Expression of Candida antarctica lipase B in Pichia pastoris and various Escherichia coli systems. Protein Expr Purif 62:90鈥?7CrossRef
    Lorenzoni ASG, Graebin NG, Martins AB, Fernandez-Lafuente R, Ayub MAZ, Rodrigues RC (2012) Optimization of pineapple flavour synthesis by esterification catalysed by immobilized lipase from Rhizomucor miehei. Flavour Fragr J 27:196鈥?00CrossRef
    Madruga M, Dantas I, Queiroz A, Brasil L, Ishihara Y (2013) Volatiles and water- and fat-soluble precursors of Saanen goat and cross Suffolk lamb flavour. Molecules 18:2150鈥?165CrossRef
    Malcorps P, Dufour JP (1992) Short-chain and medium-chain aliphatic-ester synthesis in Saccharomyces cerevisiae. Eur J Biochem 210:1015鈥?022CrossRef
    Mason AB, Dufour JP (2000) Alcohol acetyltransferases and the significance of ester synthesis in yeast. Yeast 16:1287鈥?298CrossRef
    Matsumoto M, Kida K, Kondo K (2001) Enhanced activities of lipase pretreated with organic solvents. J Chem Technol Biot 76:1070鈥?073CrossRef
    Mosher JF, Johnsson D (2005) Flavored alcoholic beverages: an international marketing campaign that targets youth. J Public Health Policy 26:326鈥?42CrossRef
    Noguerol-Pato R, Gonzalez-Alvarez M, Gonzalez-Barreiro C, Cancho-Grande B, Simal-Gandara J (2012) Aroma profile of Garnacha Tintorera-based sweet wines by chromatographic and sensorial analyses. Food Chem 134:2313鈥?325CrossRef
    Pokoj S, Lauer I, Fotisch K, Himly M, Mari A, Enrique E et al (2010) Pichia pastoris is superior to E-coli for the production of recombinant allergenic non-specific lipid-transfer proteins. Protein Expr Purif 69:68鈥?5CrossRef
    Pringle JR, Hartwell LH (1981) The molecular biology of the yeast Saccharomyces cerevisiae: life cycle and inheritance. Coldspring Harbor Press, New York
    Rodriguez GM, Tashiro Y, Atsumi S (2014) Expanding ester biosynthesis in Escherichia coli. Nat Chem Biol 10:259鈥?65CrossRef
    Saerens SM, Verstrepen KJ, Van Laere SD, Voet AR, Van Dijck P, Delvaux FR et al (2006) The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. J Biol Chem 281:4446鈥?456CrossRef
    Saerens SM, Verbelen PJ, Vanbeneden N, Thevelein JM, Delvaux FR (2008a) Monitoring the influence of high-gravity brewing and fermentation temperature on flavour formation by analysis of gene expression levels in brewing yeast. Appl Microbiol Biotechnol 80:1039鈥?051CrossRef
    Saerens SM, Delvaux F, Verstrepen KJ, Van Dijck P, Thevelein JM, Delvaux FR (2008b) Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl Environ Microbiol 74:454鈥?61CrossRef
    Salerno LF, Parks LW (1983) Sterol uptake in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 752:240鈥?43CrossRef
    Van Laere SDM, Saerens SMG, Verstrepen KJ, Van Dijck P, Thevelein JM, Delvaux FR (2008) Flavour formation in fungi: characterisation of KlAtf, the Kluyveromyces lactis orthologue of the Saccharomyces cerevisiae alcohol acetyltransferases Atf1 and Atf2. Appl Microbiol Biot 78:783鈥?92CrossRef
    Vandamme EJ, Soetaert W (2002) Bioflavours and fragrances via fermentation and biocatalysis. J Chem Technol Biot 77:1323鈥?332CrossRef
    Xu Y (1997) Immunoassay techniques. Science Press, Beijing
    Yan J, Zheng X, Du L, Li S (2014) Integrated lipase production and in situ biodiesel synthesis in a recombinant Pichia pastoris yeast: an efficient dual biocatalytic system composed of cell free enzymes and whole cell catalysts. Biotechnol Biofuels 7:55CrossRef
    Zamzuri NA, Abd-Aziz S (2013) Biovanillin from agro wastes as an alternative food flavour. J Sci Food Agric 93:429鈥?38CrossRef
  • 作者单位:Shiwen Zhuang (1) (2)
    Junshu Fu (1)
    Chris Powell (3)
    Jinhai Huang (1)
    Yihe Xia (1)
    Ruixiang Yan (1)

    1. School of Life Sciences, Tianjin University, Tianjin, China
    2. National Food Institute, Technical University of Denmark, 2800, Kg. Lyngby, Denmark
    3. Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottinghamshire, UK
  • 刊物类别:Science, general;
  • 刊物主题:Science, general;
  • 出版者:Springer International Publishing
  • ISSN:2193-1801
文摘
Medium-chain volatile flavour esters are important molecules since they have extensive applications in food, fragrance, cosmetic, paint and coating industries, which determine different characteristics of aroma or taste in commercial products. Biosynthesis of these compounds by alcoholysis is catalyzed by acyl-CoA:ethanol O-acyltransferases Eht1 or Eeb1 in Saccharomyces cerevisiae. In this study, these two yeast enzymes were selected to explore their preparations as the form of whole cell biocatalysts for the production of volatile flavour esters. Here, the novel whole cell biocatalysts Pichia pastoris yeasts with functional extracellular expression of Eht1 or Eeb1 were constructed. Flavour production was established through an integrated process with coupled enzyme formation and ester biosynthesis in the recombinant yeasts in one pot, leading to the formation of volatile C6鈥揅14 methyl and ethyl esters from wort medium. Interestingly, there is no significant difference between P. pastoris-EHT1 and P. pastoris-EEB1 in substrate preference during flavour biosynthesis, indicating a similar role of Eht1 and Eeb1 in P. pastoris cells, in contradiction with previous findings in S. cerevisiae to some extent. Consequently the study not only provides a greater understanding of these two enzymes in a heterogeneous host, but also demonstrated the positive effect of the recombinant Eht1 and Eeb1 in ester formation by P. pastoris live cells, potentially paving the way towards achieving efficient production of volatile flavour by an integrated biocatalytic system composed of recombinant enzyme production and flavour biosynthesis. Keywords Yeast Biosynthesis Ester Enzyme Integrated

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700