Competing endogenous RNA interplay in cancer: mechanism, methodology, and perspectives
详细信息    查看全文
  • 作者:Dong-Liang Cheng (1)
    Yuan-Yuan Xiang (2)
    Li-juan Ji (3)
    Xiao-Jie Lu (4)

    1. Department of Cardiothoracic Surgery
    ; Shiyan Taihe Hospital ; Hubei University of Medicine ; Shiyan City ; Hubei Province ; China
    2. Cervical disease clinic
    ; Jiangsu Huai鈥檃n Maternity and Children Hospital ; Huai鈥檃n ; China
    3. Department of Rehabilitation
    ; The Second People鈥檚 Hospital of Huai鈥檃n ; Huai鈥檃n ; China
    4. Department of Gastroenterology
    ; Shanghai East Hospital ; Tongji University ; School of Medicine ; Shanghai ; China
  • 关键词:ceRNA ; Cancer ; miRNA ; miRNA response elements
  • 刊名:Tumor Biology
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:36
  • 期:2
  • 页码:479-488
  • 全文大小:736 KB
  • 参考文献:Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489: pp. 57-74 CrossRef
    1. Bartel, DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136: pp. 215-33 CrossRef
    2. Poliseno, L, Salmena, L, Zhang, J, Carver, B, Haveman, WJ, Pandolfi, PP (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465: pp. 1033-1038 CrossRef
    3. Tay, Y, Kats, L, Salmena, L, Weiss, D, Tan, SM, Ala, U (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147: pp. 344-357 CrossRef
    4. Salmena, L, Poliseno, L, Tay, Y, Kats, L, Pandolfi, PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?. Cell 146: pp. 353-358 CrossRef
    5. Li, N, Flynt, AS, Kim, HR, Solnica-Krezel, L, Patton, JG (2008) Dispatched Homolog 2 is targeted by miR-214 through a combination of three weak microRNA recognition sites. Nucleic Acids Res 36: pp. 4277-85 CrossRef
    6. Brennecke, J, Stark, A, Russell, RB, Cohen, SM (2005) Principles of microRNA-target recognition. PLoS Biol 3: pp. e85 CrossRef
    7. Wang, B, Love, TM, Call, ME, Doench, JG, Novina, CD (2006) Recapitulation of short RNA-directed translational gene silencing in vitro. Mol Cell 22: pp. 553-560 CrossRef
    8. Chi, SW, Zang, JB, Mele, A, Darnell, RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460: pp. 479-86
    9. Qiu, MT, Hu, JW, Yin, R, Xu, L (2013) Long noncoding RNA: an emerging paradigm of聽cancer聽research. Tumour Biol 34: pp. 613-20 CrossRef
    10. Li, CH, Chen, Y (2013) Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol 45: pp. 1895-910 CrossRef
    11. Deng, K, Guo, X, Wang, H, Xia, J (2014) The聽lncRNA-MYC regulatory network in聽cancer. Tumour Biol 35: pp. 9497-503 CrossRef
    12. Penny, GD, Kay, GF, Sheardown, SA, Rastan, S, Brockdorff, N (1996) Requirement for Xist in X chromosome inactivation. Nature 379: pp. 131-137 CrossRef
    13. Wang, J, Liu, X, Wu, H, Ni, P, Gu, Z, Qiao, Y (2010) CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res 38: pp. 5366-5383 CrossRef
    14. Liu, XH, Sun, M, Nie, FQ, Ge, YB, Zhang, EB, Yin, DD (2014) Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol Cancer 13: pp. 92 CrossRef
    15. Zhou, X, Gao, Q, Wang, J, Zhang, X, Liu, K, Duan, Z (2014) Linc-RNA-RoR acts as a "sponge" against mediation of the differentiation of endometrial cancer stem cells by microRNA-145. Gynecol Oncol 133: pp. 333-9 CrossRef
    16. Xiao-Jie, L, Ai-Mei, G, Li-Juan, J, Jiang, X (2015) Pseudogene in cancer: real functions and promising signature. J Med Genet 52: pp. 17-24 CrossRef
    17. Yu, G, Yao, W, Gumireddy, K, Li, A, Wang, J, Xiao, W (2014) Pseudogene PTENP1 Functions as a Competing Endogenous RNA to Suppress Clear-Cell Renal Cell Carcinoma Progression. Mol Cancer Ther 13: pp. 3086-97 CrossRef
    18. Capel, B, Swain, A, Nicolis, S, Hacker, A, Walter, M, Koopman, P (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73: pp. 1019-1030 CrossRef
    19. Hansen, TB, Jensen, TI, Clausen, BH, Bramsen, JB, Finsen, B, Damgaard, CK (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495: pp. 384-8 CrossRef
    20. Fang, L, Du, WW, Yang, X, Chen, K, Ghanekar, A, Levy, G (2013) Versican 3使-untranslated region (3使-UTR) functions as a ceRNA in inducing the development of hepatocellular carcinoma by regulating miRNA activity. FASEB J 27: pp. 907-919 CrossRef
    21. Wang, L, Guo, ZY, Zhang, R, Xin, B, Chen, R, Zhao, J (2013) Pseudogene OCT4-pg4 functions as a natural micro RNA sponge to regulate OCT4 expression by competing for miR-145 in hepatocellular carcinoma. Carcinogenesis 34: pp. 1773-1781 CrossRef
    22. Lee, DY, Jeyapalan, Z, Fang, L, Yang, J, Zhang, Y, Yee, AY (2010) Expression of versican 3使-untranslated region modulates endogenous microRNA functions. PLoS ONE 5: pp. e13599 CrossRef
    23. Jeyapalan, Z, Deng, Z, Shatseva, T, Fang, L, He, C, Yang, BB (2011) Expression of CD44 30-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis. Nucleic Acids Res 39: pp. 3026-41 CrossRef
    24. Rutnam, ZJ, Yang, BB (2012) The non-coding 3' UTR of CD44 induces metastasis by regulating extracellular matrix functions. J Cell Sci 125: pp. 2075-85 CrossRef
    25. Yang, J, Li, T, Gao, C, Lv, X, Liu, K, Song, H (2014) FOXO1 3'UTR functions as a ceRNA in repressing the metastases of breast cancer cells via regulating miRNA activity. FEBS Lett 588: pp. 3218-24 CrossRef
    26. Kumar, MS, Armenteros-Monterroso, E, East, P, Chakravorty, P, Matthews, N, Winslow, MM (2014) HMGA2 functions as a competing endogenous RNA to promote lung cancer progression. Nature 505: pp. 212-7 CrossRef
    27. Liu, K, Guo, L, Guo, Y, Zhou, B, Li, T, Yang, H (2015) AEG-1 3'-untranslated region functions as a聽ceRNA聽in inducing epithelial-mesenchymal transition of human non-small cell lung聽cancer聽by regulating miR-30a activity. Eur J Cell Biol 94: pp. 22-31 CrossRef
    28. Karreth, FA, Tay, Y, Perna, D, Ala, U, Tan, SM, Rust, AG (2011) In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147: pp. 382-395 CrossRef
    29. Sumazin, P, Yang, X, Chiu, HS, Chung, WJ, Iyer, A, Llobet-Navas, D (2011) An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147: pp. 370-381 CrossRef
    30. Ebert, MS, Sharp, PA (2010) Emerging roles for natural microRNA sponges. Curr Biol 20: pp. R858-R861 CrossRef
    31. Mukherji, S, Ebert, MS, Zheng, GXY, Tsang, JS, Sharp, PA, Oudenaarden, A (2011) MicroRNAs can generate thresholds in target gene expression. Nat Genet 43: pp. 854-859 CrossRef
    32. Figliuzzi, M, Marinari, E, Martino, A (2013) MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory. Biophys J 104: pp. 1203-1213 CrossRef
    33. Pal, S, Gupta, R, Davuluri, RV (2012) Alternative transcription and alternative splicing in cancer. Pharmacol Ther 136: pp. 283-294 CrossRef
    34. Zhou, X, Li, X, Cheng, Y, Wu, W, Xie, Z, Xi, Q (2014) BCLAF1 and its聽splicing聽regulator SRSF10 regulate the tumorigenic potential of colon聽cancer聽cells. Nat Commun.
    35. Xu, Y, Gao, XD, Lee, JH, Huang, H, Tan, H, Ahn, J (2014) Cell type-restricted activity of hnRNPM promotes breast cancer metastasis via regulatingalternative splicing. Genes Dev 28: pp. 1191-203 CrossRef
    36. Venables, JP, Klinck, R, Koh, C, Gervais-Bird, J, Bramard, A, Inkel, L (2009) Cancer-associated regulation of alternative splicing. Nature Struct Mol Biol 16: pp. 670-676 CrossRef
    37. Mayr, C, Bartel, DP (2009) Widespread shortening of 3使UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138: pp. 673-684 CrossRef
    38. Lembo, A, Cunto, F, Provero, P (2012) Shortening of 3使UTRs correlates with poor prognosis in breast and lung cancer. PLoS ONE 7: pp. e31129 CrossRef
    39. Lau, CC, Sun, T, Ching, AK, He, M, Li, JW, Wong, AM (2014) Viral-human chimeric transcript predisposes risk to liver cancer development and progression. Cancer Cell 25: pp. 335-49 CrossRef
    40. Park, K, Dalton, JT, Narayanan, R, Barbieri, CE, Hancock, ML, Bostwick, DG (2014) TMPRSS2:ERG聽gene fusion聽predicts subsequent detection of prostate聽cancer聽in patients with high-grade prostatic intraepithelial neoplasia. J Clin Oncol 32: pp. 206-11 CrossRef
    41. Li, F, Feng, Y, Fang, R, Fang, Z, Xia, J, Han, X (2012) Viral-human chimeric transcript predisposes risk to liver cancer development and progression. Cell Res 22: pp. 928-31 CrossRef
    42. Almeida, MI, Reis, RM, Calin, GA (2012) Decoy activity through microRNAs: the therapeutic implications. Expert Opin Biol Ther 12: pp. 1153-1159 CrossRef
    43. Sabarinathan, R, Wenzel, A, Novotny, P, Tang, X, Kalari, KR, Gorodkin, J (2014) Transcriptome-wide analysis of UTRs in non-small cell lung cancer reveals cancer-related genes with SNV-induced changes on聽RNA secondary structure聽and聽miRNA聽target sites. PLoS One 9: pp. e82699 CrossRef
    44. Maas, S (2012) Posttranscriptional recoding by RNA editing. Adv Protein Chem Struct Biol 86: pp. 193-224 CrossRef
    45. Kawahara, Y, Megraw, M, Kreider, E, Iizasa, H, Valente, L, Hatzigeorgiou, AG (2008) Frequency and fate of microRNA editing in human brain. Nucleic Acids Res 36: pp. 5270-5280 CrossRef
    46. Levanon, EY, Eisenberg, E, Yelin, R, Nemzer, S, Hallegger, M, Shemesh, R (2004) Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nature Biotechnol 22: pp. 1001-1005 CrossRef
    47. Young, LE, Moore, AE, Sokol, L, Meisner-Kober, N, Dixon, DA (2012) The mRNA stability factor HuR inhibits microRNA-16 targeting of COX-2. Mol Cancer Res 10: pp. 167-180 CrossRef
    48. Epis, MR, Barker, A, Giles, KM, Beveridge, DJ, Leedman, PJ (2011) The RNA-binding protein HuR opposes the repression of ERBB-2 gene expression by microRNA miR-331鈥?p in prostate cancer cells. J Biol Chem 286: pp. 41442-41454 CrossRef
    49. Kim, HH, Kuwano, Y, Srikantan, S, Lee, EK, Martindale, JL, Gorospe, M (2009) HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev 23: pp. 1743-1748 CrossRef
    50. Ala, U, Karreth, FA, Bosia, C, Pagnani, A, Taulli, R, L茅opold, V (2013) Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proc Natl Acad Sci U S A 110: pp. 7154-7159 CrossRef
    51. Li, JH, Liu, S, Zhou, H, Qu, LH, Yang, JH (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein鈥揜NA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42: pp. D92-7 CrossRef
    52. Sarver, AL, Subramanian, S (2012) Competing endogenous RNA database. Bioinformation 8: pp. 731-733 CrossRef
    53. Miranda, KC, Huynh, T, Tay, Y, Ang, YS, Tam, WL, Thomson, AM (2006) A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126: pp. 1203-1217 CrossRef
    54. Hafner, M, Landthaler, M, Burger, L, Khorshid, M, Hausser, J, Berninger, P (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141: pp. 129-41 CrossRef
    55. Thomson, DW, Bracken, CP, Goodall, GJ (2011) Experimental strategies for microRNA target identification. Nucleic Acids Res 39: pp. 6845-6853 CrossRef
    56. Yoon, JH, Srikantan, S, Gorospe, M (2012) MS2-TRAP (MS2-tagged RNA affinity purification): tagging RNA to identify associated miRNAs. Methods 58: pp. 81-87 CrossRef
    57. Schug, J, McKenna, LB, Walton, G, Hand, N, Mukherjee, S, Essuman, K (2013) Dynamic recruitment of microRNAs to their mRNA targets in the regenerating liver. BMC Genomics.
    58. Memczak, S, Jens, M, Elefsinioti, A, Torti, F, Krueger, J, Rybak, A (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495: pp. 333-8 CrossRef
    59. Jeck, WR, Sorrentino, JA, Wang, K, Slevin, MK, Burd, CE, Liu, J (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19: pp. 141-57 CrossRef
    60. Salzman, J, Gawad, C, Wang, PL, Lacayo, N, Brown, PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7: pp. e30733 CrossRef
    61. Taulli, R, Loretelli, C, Pandolfi, PP (2013) From pseudo-ceRNAs to circ-ceRNAs: a tale of cross-talk and competition. Nature Struct Mol Biol 20: pp. 541-543 CrossRef
    62. Wilusz, JE, Sharp, PA (2013) Molecular biology. A circuitous route to noncoding RNA. Science 340: pp. 440-441 CrossRef
    63. Tollervey, D (2006) Molecular biology: RNA lost in translation. Nature 440: pp. 425-426 CrossRef
    64. Dey, N, Das, F, Ghosh-Choudhury, N, Mandal, CC, Parekh, DJ, Block, K (2012) microRNA-21 governs TORC1 activation in renal cancer cell proliferation and invasion. PLoS One 7: pp. e37366 CrossRef
    65. Xu, G, Zhang, Y, Wei, J, Jia, W, Ge, Z, Zhang, Z (2013) MicroRNA-21 promotes hepatocellular carcinoma HepG2 cell proliferation through repression of mitogen activated protein kinase-kinase 3. BMC Cancer.
    66. Mandal, CC, Ghosh-Choudhury, T, Dey, N, Choudhury, GG, Ghosh-Choudhury, N (2012) miR-21 is targeted by omega-3 polyunsaturated fatty acid to regulate breast tumor CSF-1 expression. Carcinogenesis 33: pp. 1897-1908 CrossRef
    67. Lin, J, Teo, S, Lam, DH, Jeyaseelan, K, Wang, S (2012) MicroRNA-10b pleiotropically regulates invasion, angiogenicity and apoptosis of tumor cells resembling mesenchymal subtype of glioblastoma multiforme. Cell Death Dis.
    68. Li, Q, Li, X, Guo, Z, Xu, F, Xia, J, Liu, Z (2012) MicroRNA-574-5p was pivotal for TLR9 signaling enhanced tumor progression via down-regulating checkpoint suppressor in human lung cancer. PLoS One 7: pp. e48278 CrossRef
    69. Lin, CW, Chang, YL, Chang, YC, Lin, JC, Chen, CC, Pan, SH (2013) MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS. Nat Commun.
    70. Liu, Y, Cui, H, Wang, W, Li, L, Wang, Z, Yang, S (2013) Construction of circular miRNA sponges targeting miR-21 or miR-221 and demonstration of their excellent anticancer effects on malignant melanoma cells. Int J Biochem Cell Biol 45: pp. 2643-2650 CrossRef
    71. Dylla, L, Jedlicka, P (2013) Growth-promoting role of the miR-106a鈥?63 cluster in Ewing sarcoma. PLoS One 8: pp. e63032 CrossRef
  • 刊物主题:Cancer Research;
  • 出版者:Springer Netherlands
  • ISSN:1423-0380
文摘
Competing endogenous RNAs (ceRNAs) refer to RNA transcripts, such as mRNAs, non-coding RNAs, pseudogene transcripts, and circular RNAs, that can regulate each other by competing for the same pool of miRNAs. ceRNAs involve in the pathogenesis of several common cancers such as prostate cancer, liver cancer, breast cancer, lung cancer, gastric cancer, endometrial cancer, and so on. ceRNA activity is determined by factors such as miRNA/ceRNA abundance, ceRNAs binding affinity to miRNAs, RNA editing, and RNA-binding proteins. The alteration of any of these factors may lead to ceRNA network imbalance and thus contribute to cancer initiation and progression. There are generally three steps in ceRNA research conductions: ceRNA prediction, ceRNA validation, and ceRNA functional investigation. Deciphering ceRNA interplay in cancer provides new insight into cancer pathogenesis and opportunities for therapy exploration. In this review, we try to give readers a concise and reliable illustration on the mechanism, functions, research approaches, and perspective of ceRNA in cancer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700