Analysis of the potential pathways and target genes in spinal cord injury using bioinformatics methods
详细信息    查看全文
  • 作者:Dayong Peng ; Meng Chen ; Guilai Zuo ; Shiying Shan ; Chunzheng Gao…
  • 刊名:Genes & Genomics
  • 出版年:2016
  • 出版时间:July 2016
  • 年:2016
  • 卷:38
  • 期:7
  • 页码:619-628
  • 全文大小:2,209 KB
  • 刊物主题:Microbial Genetics and Genomics; Plant Genetics & Genomics; Animal Genetics and Genomics; Human Genetics;
  • 出版者:Springer Netherlands
  • ISSN:2092-9293
  • 卷排序:38
文摘
Spinal cord injury (SCI) remains to be the most devastating type of trauma for patients because of long lasting disability and limited response to the acute drug administration and efforts at rehabilitation. With the purpose to identify potential targets for SCI treatment and to gain more insights into the mechanisms of SCI, the microarray data of GSE2270, including 119 raphe magnus (RM) samples and 125 sensorimotor cortex (SMTC) samples, was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened in RM group and SMTC group compared with their corresponding controls, respectively. A protein–protein interaction (PPI) network was constructed based on the common DEGs identified in both RM group and SMTC group. Gene ontology (GO) and pathway enrichment analyses of the overlapping DEGs were performed. Furthermore, the common DEGs enriched in each pathway were analyzed to identify significant regulatory elements. Totally, 173 overlapping DEGs (130 up-regulated and 43 down-regulated) were identified in both RM and SMTC samples. These overlapping DEGs were enriched in different GO terms. Pathway enrichment analysis revealed that DEGs were mainly related to inflammation and immunity. CD68 molecule (CD68) was a hub protein in the PPI network. Moreover, the regulatory network showed that ras-related C3 botulinum toxin substrate 2 (RAC2), CD44 molecule (CD44), and actin related protein 2/3 complex (ARPC1B) were hub genes. RAC2, CD44, and ARPC1B may be significantly involved in the pathogenesis of SCI by participating significant pathways such as extracellular matrix-receptor signaling pathway and Toll-like receptor signaling pathway.KeywordsSpinal cord injuryDifferentially expressed genesRegulatory networkTranscriptional regulatory elements

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700