Harmonic-structured copper: performance and proof of fabrication concept based on severe plastic deformation of powders
详细信息    查看全文
  • 作者:Choncharoen Sawangrat (1)
    Shota Kato (1)
    Dmitry Orlov (2) (3)
    Kei Ameyama (4)
  • 刊名:Journal of Materials Science
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:49
  • 期:19
  • 页码:6579-6585
  • 全文大小:1,356 KB
  • 参考文献:1. Tsuji N, Ito Y, Saito Y, Minamino Y (2002) Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scripta Mater 47:893-99. doi:10.1016/S1359-6462(02)00282-8 CrossRef
    2. Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater 61:782-17. doi:10.1016/j.actamat.2012.10.038 CrossRef
    3. Smirnova NA, Levit VI, Pilyugin VI, Kuznetsov RI, Davydova LS, Sazonova VA (1986) Evolution of structure in fcc monocrystals at large plastic deformations. Fiz Met Metalloved 61:1170-177
    4. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893-79. doi:10.1016/j.pmatsci.2008.03.002 CrossRef
    5. Segal VM (1995) Materials processing by simple shear. Mat Sci Eng A 197:157-64. doi:10.1016/0921-5093(95)09705-8 CrossRef
    6. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881-81. doi:10.1016/j.pmatsci.2006.02.003 CrossRef
    7. Berta M, Orlov D, Prangnell PB (2007) Grain refinement response during twist extrusion of an Al-0.13%Mg alloy. Int. J Mater Res 98:200-04
    8. Beygelzimer Y, Varyukhin V, Synkov S, Orlov D (2009) Useful properties of twist extrusion. Mater Sci Eng A 503:14-7. doi:10.1016/j.msea.2007.12.055 CrossRef
    9. Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong RG (1998) Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scripta Mater 39:1221-227. doi:10.1016/S1359-6462(98)00302-9 CrossRef
    10. Tsuji N, Saito Y, Utsunomiya H, Tanigawa S (1999) Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process. Scripta Mater 40:795-00. doi:10.1016/S1359-6462(99)00015-9 CrossRef
    11. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1-84. doi:10.1016/S0079-6425(99)00010-9 CrossRef
    12. Sanchez-De Jesus F, Bolar?n-Miro AM, Torres-Villasenor G, Cortes-Escobedo CA, Betancourt-Cantera JA (2010) Mechanical alloying of biocompatible Co-28Cr-6Mo alloy. J Mater Sci 21:2021-026. doi:10.1007/s10856-010-4066-9
    13. Ma E, Wang YM, Lu QH, Sui ML et al (2004) Strain hardening and large tensile elongation in ultrahigh-strength nano-twinned copper. Appl Phys Lett 85:4932-934. doi:10.1063/1.1814431 CrossRef
    14. Sauvage X, Wilde G, Divinski SV, Horita Z, Valiev RZ (2012) Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater Sci Eng A 540:1-2. doi:10.1016/j.msea.2012.01.080 CrossRef
    15. Rodrigues WC, Broilo LR, Schaeffer L, Kn?rnschild G, Espinoza FRM (2011) Powder metallurgical processing of Co-28%Cr-6%Mo for dental implants: physical, mechanical and electrochemical properties. Powder Technol 206:233-38. doi:10.1016/j.powtec.2010.09.024 CrossRef
    16. Wang Y, Chen M, Zhou F, Ma E (2002) High tensile ductility in a nanostructured metal. Nature 419:912-15. doi:10.1038/nature01133 CrossRef
    17. Dirras G, Gubicza J, Ramtani S, Bui QH, Szilagyi T (2010) Microstructure and mechanical characteristics of bulk polycrystalline Ni consolidated from blends of powders with different particle size. Mater Sci Eng A 527:1206-214. doi:10.1016/j.msea.2009.09.050 CrossRef
    18. Fujiwara H, Takarae S, Ameyama K (2009) Microstructure and mechanical properties of pure Fe powder compacts with nano-meso harmonic structure. In: the 2nd International symposium on steel science (ISSS), pp 269-72
    19. Sekiguchi T, Ono K, Fujiwara H, Ameyama K (2010) New microstructure design for commercially pure titanium with outstanding mechanical properties by mechanical milling and hot roll sintering. Mater Trans 51:39-5. doi:10.2320/matertrans.MB200913 CrossRef
    20. Fujiwara H, Tanaka H, Nakatani M, Ameyama K (2010) Effects of nano/meso harmonic microstructure on mechanical properties in austenitic stainless steel produced by MM/HRS process. Mater Sci Forum 38-24:1790-795. doi:10.4028/www.scientific.net/MSF.638-642.1790 CrossRef
    21. Fujiwara H, Nakatani M, Yoshida T, Zhang Z, Ameyama K (2008) Outstanding mechanical properties in the materials with a nano/meso hybrid microstructure. Mater Sci Forum 584-86:55-0 CrossRef
    22. Fujiwara H, Akada R, Yoshita R, Ameyama K (2006) Microstructure and mechanical property of nano-duplex materials produced by HRS process. Mater Sci Forum 503-04:227-32 CrossRef
    23. Fujiwara H, Kawabata T, Miyamoto H, Ameyama K (2013) Mechanical properties of harmonic structured composite with pure Titanium and Ti-48% Al alloy by MM/SPS process. Mater Trans 54(9):1619-623. doi:10.2320/matertrans.MH201317 CrossRef
    24. Ciuca OP, Ota M, Deng S, Ameyama K (2013) Harmonic structure design of a SUS329J1 two phase stainless steel and its mechanical properties. Mater Trans 54(9):1629-633. doi:10.2320/matertrans.MH201321 CrossRef
    25. Orlov D, Fujiwara H, Ameyama K (2013) Obtaining copper with harmonic structure for the optimal balance of structure-performance relationship. Mater Trans 54(9):1549-553. doi:10.2320/matertrans.MH201320 CrossRef
    26. Wang YM, Ma E (2004) Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mater Sci Eng A 375-77:46-2. doi:10.1016/j.msea.2003.10.214 CrossRef
    27. Lugo N, Llorca N, Cabrera JM, Horita Z (2008) Microstructures and mechanical properties of pure copper deformed severely by equal-channel angular pressing and high pressure torsion. Mater Sci Eng A 477:366-71. doi:10.1016/j.msea.2007.05.083 CrossRef
    28. Habibi A, Ketabchi M (2012) Enhanced properties of nano-grained pure copper by equal channel angular rolling and post-annealing. Mater and Des 34:483-87. doi:10.1016/j.matdes.2011.07.029 CrossRef
    29. Zhang Z, Vajpai SK, Orlov D, Ameyama K (2014) Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics. Mater Sci Eng A 598:106-13. doi:10.1016/j.msea.2014.01.023 CrossRef
    30. Sawangrat C, Yamaguchi O, Vajpai SK, Ameyama K (2014) Application of harmonic structure design to biomedical Co–Cr–Mo alloy for improved mechanical properties. Mater Trans 55:99-05. doi:10.2320/matertrans.MA201303 CrossRef
  • 作者单位:Choncharoen Sawangrat (1)
    Shota Kato (1)
    Dmitry Orlov (2) (3)
    Kei Ameyama (4)

    1. Advanced Materials Laboratory, Department of Mechanical Engineering, Faculty of Science and Engineering, Ritsumeikan University, Biwako Kusatsu Campus, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
    2. Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, Japan
    3. Materials Research Laboratory, University of Nova Gorica, Vipavska cesta 13, 5000, Nova Gorica, Slovenia
    4. Department of Mechanical Engineering, College of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, Japan
  • ISSN:1573-4803
文摘
Pure copper (Cu) having bimodal ‘harmonic structure-(HS) was fabricated by a technique based on severe plastic deformation of powders, which involved tailored mechanical milling and spark plasma sintering. The harmonic-structured Cu demonstrates a unique combination of high strength and large elongation superior to its homogeneous as well as bimodal heterogeneous counterparts. Specific features of harmonic structure, i.e. continuous network of ultra-fine grained (UFG) regions encompassing coarse-grained areas, lead to the extension of uniform elongation. The optimum combination of properties in pure Cu is found to be in the harmonic-structured material having 40?% UFG fraction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700