Biotic communities cannot mitigate the negative effects of grazing on multiple ecosystem functions and services in an arid shrubland
详细信息    查看全文
  • 作者:Jing Zhang ; David J. Eldridge ; Manuel Delgado-Baquerizo
  • 关键词:Grazing ; Biocrust ; Chenopod shrublands ; Soil function ; Ecosystem services ; Infiltration ; Respiration ; Carbon cycling
  • 刊名:Plant and Soil
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:401
  • 期:1-2
  • 页码:381-395
  • 全文大小:1,742 KB
  • 参考文献:Allen SE, Grimshaw HM, Rowland AP (1986) Chemical analysis. Methods in plant ecology. Blackwell Scientific, Oxford
    Bell CW, Fricks BE, Rocca JD, Steinweg JM, McMahon SK, Wallenstein MD (2013) High-throughput fluorometric measurement of potential soil extracellular enzyme activities. J Vis Exp 81:e50961PubMed
    Bell C, Carrillo Y, Boot CM, Rocca JD, Pendall E, Wallenstein MD (2014) Rhizosphere stoichiometry: are C: N:P ratios of plants, soils, and enzymes conserved at the plant species-level? New Phytol 201:505–517CrossRef PubMed
    Bowker MA, Maestre FT, Mau RL (2013) Diversity and patch-size distributions of biological soil crusts regulate dryland ecosystem multifunctionality. Ecosystems 16:923–933CrossRef
    Bradford MA, Wood SA, Bardgett RD, Black HIJ, Bonkowski M, Eggers T, Grayston SJ, Kandeler E, Manning P, Setälä H, Jones TH (2014) Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proc Natl Acad Sci 111:14478–14483CrossRef PubMed PubMedCentral
    Byrnes JEK, Isbell F, Lefcheck JS, Griffin JN, Hector A, Cardinale BJ, Hooper DU, Dee LE, Duffy JE (2014) Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol Evol 5:111–124CrossRef
    Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67CrossRef PubMed
    Colloff MJ, Pullen KR, Cunningham SA (2010) Restoration of an ecosystem function to revegetation communities: the role of invertebrate macropores in enhancing soil water infiltration. Restor Ecol 18:65–72CrossRef
    Concostrina-Zubiri L, Martinez I, Rabasa SG, Escudero A (2014) The influence of environmental factors on biological soil crust: from a community perspective to a species level approach. J Veg Sci 25:503–513CrossRef
    Daryanto S, Eldridge DJ, Koen TB (2012) Soil nutrients under shrub hummocks and debris mounds two decades after ploughing. Plant Soil 351:405–419CrossRef
    Daryanto S, Eldridge DJ, Throop HL (2013a) Managing semi-arid woodlands for carbon storage: grazing and shrub effects on above- and belowground carbon. Agric Ecosyst Environ 169:1–11CrossRef
    Daryanto S, Eldridge DJ, Wang LX (2013b) Ploughing and grazing alter the spatial patterning of surface soils in a shrub-encroached woodland. Geoderma 200:67–76CrossRef
    Daryanto S, Eldridge DJ, Wang LX (2013c) Spatial patterns of infiltration vary with disturbance in a shrub-encroached woodland. Geomorphology 194:57–64CrossRef
    de Soyza AG, Whitford WG, Herrick JE (1997) Sensitivity testing of indicators of ecosystem health. Ecosyst Health 3:44–53CrossRef
    Delgado-Baquerizo M, Gallardo A (2011) Depolymerization and mineralization rates at 12 Mediterranean sites with varying soil N availability. A test for the Schimel and Bennett model. Soil Biol Biochem 43:693–696CrossRef
    Delgado-Baquerizo M, Maestre FT, Gallardol A, et al. (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672–676CrossRef PubMed
    Delgado-Baquerizo M, Gallardo A, Covelo F, Prado-Comesaña A, Ochoa V, Maestre FT (2015) Differences in thallus chemistry are related to species-specific effects of biocrust-forming lichens on soil nutrients and microbial communities. Funct Ecol 29:1087–1098
    Dettweiler-Robinson E, Bakker JD, Grace JB (2013) Controls of biological soil crust cover and composition shift with succession in sagebrush shrub-steppe. J Arid Environ 94:96–104CrossRef
    Eldridge DJ (1996) Distribution and floristics of terricolous lichens in soil crusts in arid and semi-arid New South Wales, Australia. Aust J Bot 44:581–599CrossRef
    Eldridge DJ, Tozer ME (1997) A practical guide to soil lichens and bryophytes of Australia’s dry country. Department of Land and Water Conservation, Sydney
    Eldridge DJ, Bowker MA, Maestre FT, Alonso P, Mau RL, Papadopoulos J, Escudero A (2010) Interactive effects of three ecosystem engineers on infiltration in a semi-arid Mediterranean grassland. Ecosystems 13:499–510CrossRef
    Eldridge DJ, Soliveres S, Bowker MA, Val J (2013) Grazing dampens the positive effects of shrub encroachment on ecosystem functions in a semi-arid woodland. J Appl Ecol 50:1028–1038CrossRef
    Eldridge DJ, Beecham G, Grace J (2015) Do shrubs reduce the adverse effects of grazing on soil properties? Ecohydrology. doi:10.​1002/​eco.​1600
    Eldridge DJ, Poore AGB, Ruiz-Colmenero M, Letnic M, Soliveres S (2016). Ecosystem structure, function and composition in rangelands are negatively affected by livestock grazing. Ecol Applic (in press)
    Escudero A, Martínez I, de la Cruz A, Otálora MAG, Maestre FT (2007) Soil lichens have species-specific effects on the seedling emergence of three gypsophile plant species. J Arid Environ 70:18–28CrossRef
    Fterich A, Mahdhi M, Caviedes MA, Pajuelo E, Rivas R, Rodriguez-Llorente ID, Mars M (2011) Characterization of root-nodulating bacteria associated to Prosopis farcta growing in the arid regions of Tunisia. Arch Microbiol 193:385–397CrossRef PubMed
    Gamfeldt L, Snall T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Froberg M, Stendahl J, Philipson CD, Mikusinski G, Andersson E, Westerlund B, Andren H, Moberg F, Moen J, Bengtsson J (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4:1340CrossRef PubMed PubMedCentral
    Geddes N, Dunkerley D (1999) The influence of organic litter on the erosive effects of raindrops and of gravity drops released from desert shrubs. Catena 36:303–313CrossRef
    Grace JB (2006) Structural equation modelling and natural systems. Cambridge University Press, CambridgeCrossRef
    Graetz RD, Wilson AD (1980) Comparison of the diets of sheep and cattle grazing a semi-arid chenopod shrubland. Rangel J 2:67–75CrossRef
    Hauck M, Jurgens SR, Willenbruch K, Huneck S, Leuschner C (2009) Dissociation and metal-binding characteristics of yellow lichen substances suggest a relationship with site preferences of lichens. Ann Bot 103:13–22CrossRef PubMed PubMedCentral
    Hawkes CV, Menges ES (2003) Effects of lichens on seedling emergence in a xeric Florida shrubland. Southeast Nat 2:223–234CrossRef
    Howard KSC, Eldridge DJ, Soliveres S (2012) Positive effects of shrubs on plant species diversity do not change along a gradient in grazing pressure in an arid shrubland. Basic Appl Ecol 13:159–168CrossRef
    Joergensen RG, Scheu S (1999) Response of soil microorganisms to the addition of carbon, nitrogen and phosphorus in a forest Rendzina. Soil Biol Biochem 31:859–866CrossRef
    Kutt AS, Vanderduys EP, Perry JJ, Perkins GC, Kemp JE, Bateman BL, Kanowski J, Jensen R (2012) Signals of change in tropical savanna woodland vertebrate fauna 5 years after cessation of livestock grazing. Wildl Res 39:386–396CrossRef
    Laycock WA, Conrad PW (1981) Responses of vegetation and cattle to various systems of grazing on seeded and native mountain rangelands in Eastern Utah. J Range Manag 34:52–58CrossRef
    Lundholm JT (2015) Green roof plant species diversity improves ecosystem multifunctionality. J Appl Ecol. doi:10.​1111/​1365-2664.​12425
    Lunt ID, Jansen A, Binns DL, Kenny SA (2007) Long-term effects of exclusion of grazing stock on degraded herbaceous plant communities in a riparian Eucalyptus camaldulensis forest in south-eastern Australia. Austral Ecol 32:937–949CrossRef
    Macdonald BCT (2000) University of New South Wales Fowlers Gap Arid Zone Research Station - nearly 50 years of research. Rangel J 22:5–31CrossRef
    Maestre FT, Puche MD (2009) Indices based on surface indicators predict soil functioning in Mediterranean semi-arid steppes. Appl Soil Ecol 41:342–350CrossRef
    Maestre FT, Bowker MA, Canton Y, Castillo-Monroy AP, Cortina J, Escolar C, Escudero A, Lazaro R, Martinez I (2011) Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain. J Arid Environ 75:1282–1291CrossRef PubMed PubMedCentral
    Maestre FT, Quero JL, Gotelli NJ (2012) Plant species richness and ecosystem multifunctionality in global drylands. Science 335:214–218CrossRef PubMed PubMedCentral
    Margarey ER (1999) The effect of sheep grazing on lizard assemblages in the New South Wales arid zone. Unpublished BSc (Hons) thesis, School of Biological Science. Sydney, University of New South Wales, p 54
    Miller JED, Damschen E (2013). Relationships among biological soil crusts, environment, and vascular plants in Ozark sandstone glades. Proc. 98th ESA Annual Convention, Minneapolis, Minnesota
    Muscha JM, Hild AL (2006) Biological soil crusts in grazed and ungrazed Wyoming sagebrush steppe. J Arid Environ 67:195–207CrossRef
    Orwin KH, Ostle N, Wilby A, Bardgett RD (2014) Effects of species evenness and dominant species identity on multiple ecosystem functions in model grassland communities. Oecologia 174:979–992CrossRef PubMed
    Pietrasiak N, Regus JU, Johansen JR, Lam D, Sachs JL, Santiago LS (2013) Biological soil cust community types differ in key ecological functions. Soil Biol Biochem 65:168–171CrossRef
    Pintado A, Sancho LG, Green TGA, Blanquer JM, Lazaro R (2005) Functional ecology of the biological soil crust in semiarid SE Spain: sun and shade populations of Diploschistes diacapsis (Ach.) Lumbsch. Lichenologist 37:425–432CrossRef
    Rogers RW (1995) Lichen succession on leaves of the rain-forest shrub, Capparis arborea (Capparaceae). Aust J Bot 43:387–396CrossRef
    Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–563CrossRef
    Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG (1990) Biological feedbacks in global desertification. Science 247:1043–1048CrossRef PubMed
    Smit C, Vandenberghe C, den Ouden J, Muller-Scharer H (2007) Nurse plants, tree saplings and grazing pressure: changes in facilitation along a biotic environmental gradient. Oecologia 152:265–273CrossRef PubMed
    Soliveres S, Maestre FT, Bowker MA, Torices R, Quero JL (2014) Functional traits determine plant co-occurrence more than environment or evolutionary relatedness in global drylands. Perspect Plant Ecol Evol Syst 16:164–173CrossRef PubMed PubMedCentral
    Tabatabai MA (1982) Methods of soil analyses part 2. American Society of Agronomy, Madison
    Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307CrossRef
    Thomas AD (2012) Impact of grazing intensity on seasonal variations in soil organic carbon and soil CO2 efflux in two semiarid grasslands in southern Botswana. Philos Trans R Soc B 367:3076–3086CrossRef
    Throop HL, Archer SR (2008) Shrub (Prosopis velutina) encroachment in a semidesert grassland: spatial-temporal changes in soil organic carbon and nitrogen pools. Glob Chang Biol 14:2420–2431CrossRef
    Tongway D (1995) Monitoring soil productive potential. Environ Monit Assess 37:303–318CrossRef PubMed
    Tongway DJ, Sparrow AD, Friedel MH (2003) Degradation and recovery processes in arid grazing lands of central Australia. Part 1: soil and land resources. J Arid Environ 55:301–326CrossRef
    Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A 111:5266–5270CrossRef PubMed PubMedCentral
    World Bank (2008) World development report, agriculture for development. World Bank, Washington
    Yan F, Schubert S, Mengel K (1996) Soil pH increase due to biological decarboxylation of organic anions. Soil Biol Biochem 28:617–624CrossRef
  • 作者单位:Jing Zhang (1) (2)
    David J. Eldridge (2)
    Manuel Delgado-Baquerizo (3)

    1. Key Laboratory of Biogeography and Bioresources in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi, 830011, Xinjiang, People’s Republic of China
    2. University of New South Wales Arid Zone Research Station, Fowlers Gap, via Broken Hill, NSW, 2880, Australia, c/- Centre for Ecosystem Studies, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
    3. Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, 2751, Australia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Soil Science and Conservation
    Plant Physiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5036
文摘
Aims Dryland biotic communities (plants and biocrusts) are known to maintain multiple functions (multifunctionality) and services (multiservices) that decline with overgrazing by domestic livestock. Here, we evaluate the role of biotic communities in controlling the responses of multiple functions and services to grazing in an arid shrubland.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700