Direct writing of graphene patterns and devices on graphene oxide films by inkjet reduction
详细信息    查看全文
  • 作者:Yang Su ; Shuai Jia ; Jinhong Du ; Jiangtan Yuan ; Chang Liu ; Wencai Ren…
  • 关键词:graphene ; graphene oxide ; direct writing ; inkjet printing ; reduction
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:8
  • 期:12
  • 页码:3954-3962
  • 全文大小:2,112 KB
  • 参考文献:[1]Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Rollto-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotech. 2010, 5, 574-78.CrossRef
    [2]Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192-00.CrossRef
    [3]Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotech. 2008, 3, 101-05.CrossRef
    [4]Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E. G.; Dai, H. J. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotech. 2008, 3, 538-42.CrossRef
    [5]Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228-40.CrossRef
    [6]Chua, C. K.; Pumera, M. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 2014, 43, 291-12.CrossRef
    [7]Wei, Z. Q.; Wang, D. B.; Kim, S.; Kim, S. Y.; Hu, Y. K.; Yakes, M. K.; Laracuente, A. R.; Dai, Z. T.; Marder, S. R.; Berger, C. et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 2010, 328, 1373-376.CrossRef
    [8]Zhang, K.; Fu, Q.; Pan, N.; Yu, X. X.; Liu, J. Y.; Luo, Y.; Wang, X. P.; Yang, J. L.; Hou, J. G. Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography. Nat. Commun. 2012, 3, 1194.CrossRef
    [9]Mativetsky, J. M.; Treossi, E.; Orgiu, E.; Melucci, M.; Veronese, G. P.; Samorì, P.; Palermo, V. Local current mapping and patterning of reduced graphene oxide. J. Am. Chem. Soc. 2010, 132, 14130-4136.CrossRef
    [10]Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L.; Ci, L. J.; Vajtai, R.; Zhang, Q.; Wei, B. Q.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotech. 2011, 6, 496-00.CrossRef
    [11]Zhang, Y. L.; Guo, L.; Wei, S.; He, Y. Y.; Xia, H.; Chen, Q. D.; Sun, H.-B.; Xiao, F.-S. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 2010, 5, 15-0.CrossRef
    [12]Strong, V.; Dubin, S.; El-Kady, M. F.; Lech, A.; Wang, Y.; Weiller, B. H.; Kaner, R. B. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 2012, 6, 1395-403.CrossRef
    [13]Shin, K.-Y.; Hong, J.-Y.; Jang, J. Micropatterning of graphene sheets by inkjet printing and its wideband dipoleantenna application. Adv. Mater. 2011, 23, 2113-118.CrossRef
    [14]Dua, V.; Surwade, S. P.; Ammu, S.; Agnihotra, S. R.; Jain, S.; Roberts, K. E.; Park, S.; Ruoff, R. S.; Manohar, S. K. All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem., Int. Ed. 2010, 49, 2154-157.CrossRef
    [15]Torrisi, F.; Hasan, T.; Wu, W. P.; Sun, Z. P.; Lombardo, A.; Kulmala, T. S.; Hsieh, G.-W.; Jung, S.; Bonaccorso, F.; Paul, P. J. et al. Inkjet-printed graphene electronics. ACS Nano 2012, 6, 2992-006.CrossRef
    [16]Su, Y.; Du, J. H.; Sun, D. M.; Liu, C.; Cheng, H. M. Reduced graphene oxide with a highly restored p-conjugated structure for inkjet printing and its use in all-carbon transistors. Nano Res. 2013, 6, 842-52.CrossRef
    [17]Zhao, J. P.; Pei, S. F.; Ren, W. C.; Gao, L. B.; Cheng, H.-M. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 2010, 4, 5245-252.CrossRef
    [18]Wang, J.; Liang, M. H.; Fang, Y.; Qiu, T. F.; Zhang, J.; Zhi, L. J. Rod-coating: Towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv. Mater. 2012, 24, 2874-878.CrossRef
    [19]Han, D. X.; Han, T. T.; Shan, C. S.; Ivaska, A.; Niu, L. Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan-graphene modified electrode. Electroanalysis 2010, 22, 2001-008.CrossRef
    [20]Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558-565.CrossRef
    [21]Shin, H.-J.; Kim, K. K.; Benayad, A.; Yoon, S.-M.; Park, H. K.; Jung, I.-S.; Jin, M. H.; Jeong, H.-K.; Kim, J. M.; Choi, J.-Y.; Lee, Y. H. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 2009, 19, 1987-992.CrossRef
    [22]Fernández-Merino, M. J.; Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J. M. D. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 2010, 114, 6426-432.CrossRef
    [23]Zhang, J. L.; Yang, H. J.; Shen, G. X.; Cheng, P.; Zhang, J. Y.; Guo, S. W. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 2010, 46, 1112-114.CrossRef
    [24]Pei, S. F.; Zhao,
  • 作者单位:Yang Su (1)
    Shuai Jia (1)
    Jinhong Du (1)
    Jiangtan Yuan (1)
    Chang Liu (1)
    Wencai Ren (1)
    Huiming Cheng (1)

    1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Direct writing of graphene patterns and devices may significantly facilitate the application of graphene-based flexible electronics. In terms of scalability and cost efficiency, inkjet printing is very competitive over other existing directwriting methods. However, it has been challenging to obtain highly stable and clog-free graphene-based ink. Here, we report an alternative and highly efficient technique to directly print a reducing reagent on graphene oxide film to form conductive graphene patterns. By this “inkjet reduction-method, without using any other microfabrication technique, conductive graphene patterns and devices for various applications are obtained. The ionic nature of the reductant ink makes it clog-free and stable for continuous and large-area printing. The method shows self-limited reduction feature, which enables electrical conductivity of graphene patterns to be tuned within 5 orders of magnitude, reaching as high as 8,000 S·m-. Furthermore, this method can be extended to produce noble metal/graphene composite patterns. The devices, including transistors, biosensors, and surfaceenhanced Raman scattering substrates, demonstrate excellent functionalities. This work provides a new strategy to prepare large-area graphene-based devices that is low-cost and highly efficient, promising to advance research on graphenebased flexible electronics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700