Iron-based composite nanostructure catalysts used to produce CO x -free hydrogen from ammonia
详细信息    查看全文
  • 作者:Hui-Zhen Cui ; Ying-Qiu Gu ; Xin-Xin He ; Shuai Wei ; Zhao Jin…
  • 关键词:Composite nanostructures ; Ammonia decomposition ; In situ XRD ; TPR
  • 刊名:Chinese Science Bulletin
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:61
  • 期:3
  • 页码:220-226
  • 全文大小:1,058 KB
  • 参考文献:1.Hards GA (1996) Fourth grove fuel cell symposium: from the technical success to the challenges facing commercialisation. Int J Hydrogen Energy 21:777–780CrossRef
    2.Schüth F, Palkovits R, Schlögl R et al (2012) Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition. Energy Environ Sci 5:6278–6289CrossRef
    3.Gamburzev S, Appleby AJ (2002) Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC). J Power Sources 107:5–12CrossRef
    4.Chang H, Kim JR, Cho JH et al (2002) Materials and processes for small fuel cells. Solid State Ionics 148:601–606CrossRef
    5.Cheng HM, Yang QH, Liu C (2001) Hydrogen storage in carbon nanotubes. Carbon 39:1447–1454CrossRef
    6.Hsu SE, Beibutian VM, Yeh MT (2002) Preparation of hydrogen storage alloys for applications of hydrogen storage and transportation. J Alloys Compd 330–332:882–885CrossRef
    7.Qi ZG, He CZ, Kaufman A (2002) Effect of CO in the anode fuel on the performance of PEM fuel cell cathode. J Power Sources 111:239–247CrossRef
    8.Baschuk JJ, Li XG (2001) Carbon monoxide poisoning of proton exchange membrane fuel cells. Int J Energy Res 25:695–713CrossRef
    9.Yin SF, Xu BQ, Zhou XP et al (2004) A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Appl Catal A Gen 277:1–9CrossRef
    10.Choudhary TV, Sivadinarayana C, Goodmann DW (2003) Production of CO x -free hydrogen for fuel cells via step-wise hydrocarbon reforming and catalytic dehydrogenation of ammonia. Chem Eng J 93:69–80CrossRef
    11.Choudhary TV, Sivadinarayana C, Goodman DW (2001) Catalytic ammonia decomposition: CO x -free hydrogen production for fuel cell applications. Catal Lett 72:197–201CrossRef
    12.Yin SF, Zhang QH, Au CT et al (2004) Investigation on the catalysis of CO x -free hydrogen generation from ammonia. J Catal 224:384–396CrossRef
    13.Feyen M, Weidenthaler C, Güttel R et al (2011) High-temperature stable, iron-based core–shell catalysts for ammonia decomposition. Chem Eur J 17:598–605CrossRef
    14.Wang L, Zhao Y, Liu C et al (2013) Plasma driven ammonia decomposition on a Fe-catalyst: eliminating surface nitrogen poisoning. Chem Commun 49:3787–3789CrossRef
    15.Lu AH, Nitz JJ, Comotti M et al (2010) Spatially and size selective synthesis of Fe-based nanoparticles on ordered mesoporous supports as highly active and stable catalysts for ammonia decomposition. J Am Chem Soc 132:14152–14162CrossRef
    16.Duan XZ, Qian G, Zhou XG et al (2011) Tuning the size and shape of Fe nanoparticles on carbon nanofibers for catalytic ammonia decomposition. Appl Catal B Environ 101:189–196CrossRef
    17.Sørensen RZ, Nielsen LJE, Jensen S et al (2005) Catalytic ammonia decomposition: miniaturized production of CO x -free hydrogen for fuel cells. Catal Commun 6:229–232CrossRef
    18.Zhang J, Comotti M, Schüth F et al (2007) Commercial Fe- or Co-containing carbon nanotubes as catalysts for NH3 decomposition. Chem Commun 19:1916–1918CrossRef
    19.Ganley JC, Thomas FS, Seebauer EG et al (2004) A priori catalytic activity correlations: the difficult case of hydrogen production from ammonia. Catal Lett 96:117–122CrossRef
    20.Zhang J, Xu H, Li W (2005) Kinetic study of NH3 decomposition over Ni nanoparticles: the role of La promoter, structure sensitivity and compensation effect. Appl Catal A Gen 296:257–267CrossRef
    21.Ji J, Duan X, Zhou X et al (2013) In situ production of Ni catalysts at the tips of carbon nanofibers and application in catalytic ammonia decomposition. Ind Eng Chem Res 52:1854–1858CrossRef
    22.Kowalczyk Z, Sentek J, Jodzis S et al (1997) Effect of potassium on the kinetics of ammonia synthesis and decomposition over fused iron catalyst at atmospheric pressure. J Catal 169:407–414CrossRef
    23.Arabczyk W, Zamlynny J (1999) Study of the ammonia decomposition over iron catalysts. Catal Lett 60:167–171CrossRef
    24.Jedynak A, Kowalczyk Z, Szmigiel D et al (2002) Ammonia decomposition over the carbon-based iron catalyst promoted with potassium. Appl Catal A Gen 237:223–226CrossRef
    25.Tsubouchi N, Hashimoto H, Ohtsuka Y (2005) High catalytic performance of fine particles of metallic iron formed from limonite in the decomposition of a low concentration of ammonia. Catal Lett 105:203–208CrossRef
    26.Kraupner A, Markus A, Palkovits R et al (2010) Mesoporous Fe3C sponges as magnetic supports and as heterogeneous catalyst. J Mater Chem 20:6019–6022CrossRef
    27.Li YX, Yao LH, Liu SQ et al (2011) Cs-modified iron nanoparticles encapsulated in microporous and mesoporous SiO2 for CO x -free H2 production via ammonia decomposition. Catal Today 160:79–86CrossRef
    28.Zhuang Q, Qin YN, Chang L (1991) Promoting effect of cerium oxide in supported nickel catalyst for hydrocarbon steam-reforming. Appl Catal 70:1–8CrossRef
    29.Zhou YH, Zhou J (2010) Growth and surface structure of Ti-doped CeO x (111) thin films. J Phys Chem Lett 1:1714–1720CrossRef
    30.Hu P, Yu LJ, Yuan FL et al (2009) Fabrication of monodisperse magnetite hollow spheres. J Phys Chem C 113:900–906CrossRef
    31.Strandwitz NC, Stucky GD (2009) Hollow microporous cerium oxide spheres templated by colloidal silica. Chem Mater 21:4577–4582CrossRef
    32.Li W, Yang JP, Wu ZX et al (2012) A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core–shell structures. J Am Chem Soc 134:11864–11867CrossRef
    33.Kock AJHM, Fortuin HM, Geus JW (1985) The reduction behavior of supported iron catalysts in hydrogen or carbon monoxide atmospheres. J Catal 96:261–275CrossRef
  • 作者单位:Hui-Zhen Cui (1)
    Ying-Qiu Gu (1)
    Xin-Xin He (1)
    Shuai Wei (1)
    Zhao Jin (1)
    Chun-Jiang Jia (1)
    Qi-Sheng Song (1)

    1. Key Laboratory for Colloid and Interface Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
  • 刊物主题:Science, general; Life Sciences, general; Physics, general; Chemistry/Food Science, general; Earth Sciences, general; Engineering, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-9541
文摘
Iron-based composite nanostructures with ceria or titania as shell coating on naked iron spheres were successfully synthesized and used to catalyze ammonia decomposition. The structure and texture of fresh and used catalysts were characterized by transmission electron microscopy, X-ray diffraction, in situ X-ray diffraction, temperature-programmed reduction by hydrogen, and N2 adsorption–desorption. For ammonia decomposition, the iron-based composite catalyst coated with cerium and titanium showed excellent catalytic activity compared with naked iron sphere catalyst, with the former yielding nearly 100 % ammonia conversions at 650 °C and showing high stability in the catalysis test (for 60 h) at 600 °C with a space velocity of 24,000 cm3 g cat −1  h −1. These results showed that adding cerium and titanium played a key role in improving catalytic activity for ammonia decomposition and enabling high thermal stability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700