Modeling H, Na, and K diffusion in plagioclase feldspar by relating point defect parameters to bulk properties
详细信息    查看全文
  • 作者:Baohua Zhang ; Shuangming Shan ; Xiaoping Wu
  • 关键词:Diffusion ; Hydrogen ; Sodium ; Potassium ; Plagioclase feldspar ; cBΩ model
  • 刊名:Physics and Chemistry of Minerals
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:43
  • 期:2
  • 页码:151-159
  • 全文大小:1,275 KB
  • 参考文献:Ahrens TJ (1995) Mineral physics and crystallography: a handbook of physical constants. AGU reference shelf 2, AGU, Washington
    Alexopoulos KD, Varotsos PA (1981) Calculation of diffusion coefficients at any temperature and pressure from a single measurement: II. Heterodiffusion. Phys Rev B 24:3606–3609CrossRef
    Angel RJ (2004) Equations of state of plagioclase feldspars. Contrib Mineral Petrol 146:506–512CrossRef
    Behrens H, Johannes W, Schmalzried H (1990) On the mechanisms of cation diffusion processes in ternary feldspars. Phys Chem Mineral 17:62–78CrossRef
    Benusa M, Angel RJ, Ross NL (2005) Compression of albite, NaAlSi3O8. Am Mineral 90:1115–1120CrossRef
    Cherniak D (2010) Cation diffusion in feldspars. Rev Mineral Geochem 72:691–733CrossRef
    Chroneos A, Vovk RV (2015) Modeling self-diffusion in UO2 and ThO2 by connecting point defect parameters with bulk properties. Solid State Ion 274:1–3CrossRef
    Dologlou E (2011) Interrelation of the equation of state of MgO and self diffusion coefficients. J Appl Phys 110(3):036103CrossRef
    Foland KA (1974) Alkali diffusion in orthoclase. In: Hofmann AW, Gileui BJ, Yoder HS, Yund RA (eds) Geochemical transport and kinetics, vol 634. Carnegie Institution of Washington, Baltimore, pp 77–98
    Ganniari-Papageorgiou E, Fitzpatrick ME, Chroneos A (2015) Germanium diffusion in aluminium: connection between point defect parameters with bulk properties. J Mater Sci Mater Electron. doi:10.​1007/​s10854-015-3510-5
    Giletti BJ (1974) Diffusion related to geochronology. In: Hofmann AW, Gileui BJ, Yoder HS, Yund RA (eds) Geochemical transport and kinetics, vol 634. Carnegie Institution of Washington, Baltimore, pp 61–76
    Giletti BJ, Shanahan TM (1997) Alkali diffusion in plagioclase feldspar. Chem Geol 139:3–20CrossRef
    Hovis GL, Medford A, Conlon M, Tether A, Romanoski A (2010) Principles of thermal expansion in the feldspar system. Am Mineral 95:1060–1068CrossRef
    Hu H, Li H, Dai L, Shan S, Zhu C (2011) Electrical conductivity of albite at high temperatures and high pressures. Am Mineral 96:1821–1827CrossRef
    Hu H, Li H, Dai L, Shan S, Zhu C (2013) Electrical conductivity of alkali feldspar solid solutions at high temperatures and high pressures. Phys Chem Mineral 40:51–62CrossRef
    Hu H, Dai L, Li H, Jiang JJ, Hui KS (2014) Electrical conductivity of K-feldspar at high temperature and high pressure. Mineral Petrol 108:609–618CrossRef
    Ingrin J, Blanchard M (2006) Diffusion of hydrogen in minerals. Rev Mineral Geochem 62:291–320CrossRef
    Johnson EA, Rossman GR (2003) The concentration and speciation of hydrogen in feldspars using FTIR and 1H MAS NMR spectroscopy. Am Mineral 88:901–911CrossRef
    Johnson EA, Rossman GR (2013) The diffusion behavior of hydrogen in plagioclase feldspar at 800–1000 °C: implications for re-equilibration of hydroxyl in volcanic phenocrysts. Am Mineral 98:1779–1787CrossRef
    Jones A, Islam MS, Mortimer M, Palmer D (2004) Alkali ion migration in albite and K-feldspar. Phys Chem Mineral 31:313–320CrossRef
    Karato S (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347:272–273CrossRef
    Karato S (2013) Theory of isotope diffusion in a material with multiple species and its implications for hydrogen-enhanced electrical conductivity in olivine. Phys Earth Planet Inter 219:49–54CrossRef
    Kasper RB (1975) Cation and oxygen diffusion in albite. Ph.D. dissertation, Brown University, Providence, Rhode Island
    Kronenberg AK, Yund RA, Rossman GR (1996) Stationary and mobile hydrogen defects in potassium feldspar. Geochim Cosmochim Acta 60:4075–4094CrossRef
    Lin TH, Yund RA (1972) Potassium and sodium self-diffusion in alkali feldspar. Contrib Mineral Petrol 34:177–184CrossRef
    Maury R (1968) Conductivilite electrique des tectosilicates. II. Discussion des resultats. Bulletin de la Societe Francaise de Mineralogie et Cristallographie 91:355–366
    Ni H, Keppler H, Manthilake M, Katsura T (2011) Electrical conductivity of dry and hydrous NaAlSi3O8 glasses and liquids at high pressures. Contrib Mineral Petrol 162:501–513CrossRef
    Papathanassiou AN, Sakellis I (2010) Correlation of the scaling exponent γ of the diffusivity–density function in viscous liquids with their elastic properties. J Chem Phys 132(15):154503CrossRef
    Saltas V, Vallianatos F (2015) Thermodynamic calculations of self-and hetero-diffusion parameters in germanium. Mater Chem Phys 163:507–511CrossRef
    Shewmon PG (1963) Diffusion in solids. McGraw-Hill, New York
    Stewart DB, Von Limbach D (1967) Thermal expansion of low and high albite. Am Mineral 52:389–413
    Tribaudino M, Angel RJ, Cámara F, Nestola F, Pasqual D, Margiolaki I (2010) Thermal expansion of plagioclase feldspars. Contrib Mineral Petrol 160:899–908CrossRef
    Tribaudino M, Bruno M, Nestola F, Pasqual D, Angel RJ (2011) Thermoelastic and thermodynamic properties of plagioclase feldspars from thermal expansion measurements. Am Mineral 96:992–1002CrossRef
    Tullis J (1983) Deformation of feldspars. In: Ribbe PH (ed) Feldspar mineralogy. vol 2. Mineralogical Society of America, United States, pp 297–323
    Vallianatos F, Saltas V (2014) Application of the cBΩ model to the calculation of diffusion parameters of He in olivine. Phys Chem Mineral 41:181–188CrossRef
    Varotsos PA (1977) On the temperature and pressure dependence of the defect formation volume in ionic crystals. J Phys Lett 38:L455–L458CrossRef
    Varotsos PA (2007a) Comparison of models that interconnect point defect parameters in solids with bulk properties. J Appl Phys 101(12):123503CrossRef
    Varotsos PA (2007b) Defect volumes and the equation of state in α-PbF2. Phys Rev B 76(9):092106CrossRef
    Varotsos PA (2007c) Calculation of point defect parameters in diamond. Phys Rev B 75(17):172107CrossRef
    Varotsos PA (2008) Point defect parameters in β-PbF2 revisited. Solid State Ion 179(11–12):438–441CrossRef
    Varotsos PA, Alexopoulos KD (1977a) Calculation of the formation entropy of vacancies due to anharmonic effects. Phys Rev B 15:4111–4114CrossRef
    Varotsos PA, Alexopoulos KD (1977b) The curvature in conductivity plots of alkali halides as a consequence of anharmonicity. J Phys Chem Solids 38:997–1001CrossRef
    Varotsos PA, Alexopoulos KD (1980a) Calculation of diffusion coefficients at any temperature and pressure from a single measurement: I. Self-diffusion. Phys Rev B 22(6):3130–3134CrossRef
    Varotsos PA, Alexopoulos KD (1980b) On the extraction of the vacancy formation parameters from specific heat data. Phys Status Solidi (a) 58:639–644CrossRef
    Varotsos PA, Alexopoulos KD (1980c) On the question of the calculation of migration volumes in ionic crystals. Philos Mag A 42:13–18CrossRef
    Varotsos PA, Alexopoulos KD (1980d) Determination of the compressibility of an alloy from its density. Phys Status Solidi (b) 102:K67–K72CrossRef
    Varotsos PA, Alexopoulos KD (1982) Current methods of lattice defect analysis using dilatometry and self-diffusion. Phys Status Solidi (b) 110:9–31CrossRef
    Varotsos PA, Alexopoulos KD (1986) Thermodynamics of point defects and their relation with bulk properties. North Holland, Amsterdam
    Varotsos PA, Ludwig W, Alexopoulos KD (1978) Calculation of the formation volume of vacancies in solids. Phys Rev B 18(6):2683–2691CrossRef
    Varotsos PA, Alexopoulos KD, Varotsos C, Lazridou M (1985) Interconnection of point defect parameters in BaF2. Phys Status Solidi (a) 88:K137–K140CrossRef
    Yang X, Keppler H, McCammon C, Ni H (2012) Electrical conductivity of orthopyroxene and plagioclase in the lower crust. Contrib Mineral Petrol 63:33–48CrossRef
    Yoshino T, Matsuzaki T, Yamashita S, Katsura T (2006) Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature 443:973–976CrossRef
    Zhang BH (2012) Diffusion of hydrogen in (Mg, Fe)2SiO4 and high pressure polymorphs refined by the cBΩ model. J Asian Earth Sci 54–55:9–17CrossRef
    Zhang BH (2014) Calculation of self-diffusion coefficients in iron. AIP Adv 4(1):017128CrossRef
    Zhang BH, Shan SM (2015a) Application of the cBΩ model to the calculation of diffusion parameters of Si in silicates. Geochem Geophys Geosyst 16:705–718CrossRef
    Zhang BH, Shan SM (2015b) Thermodynamic calculations of Fe–Mg interdiffusion in (Mg, Fe)2SiO4 polymorphs and perovskite. J Appl Phys 117(5):054906CrossRef
    Zhang BH, Wu XP (2012) Calculation of self-diffusion coefficients in diamond. Appl Phys Lett 100(5):051901CrossRef
    Zhang BH, Wu XP (2013) Diffusion of aluminum in MgO: a thermodynamic approach. Chin Phys B 22(5):056601CrossRef
    Zhang BH, Wu XP, Xu JS, Zhou RL (2010) Application of the cBΩ model for the calculation of oxygen self-diffusion coefficients in minerals. J Appl Phys 108(5):053505CrossRef
    Zhang BH, Wu XP, Zhou RL (2011) Calculation of oxygen self-diffusion coefficients in Mg2SiO4 polymorphs and MgSiO3 perovskite based on the compensation law. Solid State Ion 186(1):20–28CrossRef
    Zhang BH, Yoshino T, Wu XP, Matsuzaki T, Shan SM, Katsura T (2012) Electrical conductivity of enstatite as a function of water content: Implications for the electrical structure in the upper mantle. Earth Planet Sci Lett 357–358:11–20CrossRef
  • 作者单位:Baohua Zhang (1)
    Shuangming Shan (1)
    Xiaoping Wu (2)

    1. Key Laboratory for High-Temperature and High-Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou, People’s Republic of China
    2. School of Earth and Space Science, University of Science and Technology of China, Hefei, 230026, People’s Republic of China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Mineralogy
    Crystallography
    Geochemistry
    Mineral Resources
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2021
文摘
Hydrogen and alkali ion diffusion in plagioclase feldspars is important to study the evolution of the crust and the kinetics of exsolution and ion-exchange reactions in feldspars. Using the available PVT equation of state of feldspars, we show that the diffusivities of H and alkali in plagioclase feldspars as a function of temperature can be successfully reproduced in terms of the bulk elastic and expansivity data through a thermodynamic model that interconnects point defect parameters with bulk properties. Our calculated diffusion coefficients of H, Na, and K well agree with experimental ones when uncertainties are considered. Additional point defect parameters such as activation enthalpy, activation entropy, and activation volume are also predicted. Furthermore, the electrical conductivity of feldspars inferred from our predicted diffusivities of H, Na, and K through the Nernst–Einstein equation is compared with previous experimental data. Keywords Diffusion Hydrogen Sodium Potassium Plagioclase feldspar cBΩ model

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700