Electrical conductivity of alkali feldspar solid solutions at high temperatures and high pressures
详细信息    查看全文
  • 作者:Haiying Hu (1)
    Heping Li (1)
    Lidong Dai (1)
    Shuangming Shan (1)
    Chengming Zhu (1)
  • 关键词:Alkali feldspar solid solutions ; Electrical conductivity ; Composition ; High temperature ; Conduction mechanism ; Rocks
  • 刊名:Physics and Chemistry of Minerals
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:40
  • 期:1
  • 页码:51-62
  • 全文大小:443KB
  • 参考文献:1. Alvarez R, Reynoso JP, Alvarez LJ, Martinez ML (1978) Electrical conductivity of igneous rocks: composition and temperature relations. Bull Volcanol 41:317-27 CrossRef
    2. Bagdassarov NS, Delépine N (2004) α–οinversion in quartz from low frequency electrical impedance spectroscopy. J Phys Chem Solids 65:1517-526 CrossRef
    3. Bagdassarov NS, Maumus J, Poe B, Bulatov V (2004) Pressure dependence of Tg in silicate glasses from electrical impedance measurements. Phys Chem Glasses B 45:197-14
    4. Bakhterev VV (2008) High temperature electric conductivity of some feldspars. Dokl Earth Sci 420:554-57 CrossRef
    5. Beekmans N, Heyne L (1976) Correlation between impedance, microstructure and composition of calcia-stabilized zirconia. Electrochim Acta 21:303-10 CrossRef
    6. Behrens H, Johannes W, Schmalzried H (1990) On the mechanisms of cation diffusion processes in ternary feldspars. Phys Chem Minerals 17:62-8 CrossRef
    7. Christoffersen R, Yund RA, Tullus J (1983) Inter-diffusion of K and Na in alkali feldspars: diffusion couple experiments. Am Mineral 68:1113-126
    8. Constable S (1990) Electrical conductivity of olivine, a dunite, and the mantle. J Geophys Res 95:6967-978 CrossRef
    9. Dai L, Karato S (2009a) Electrical conductivity of orthopyroxene: implications for the water content of the asthenosphere. P Jpn Acad B Phys 85:466-75 CrossRef
    10. Dai L, Karato S (2009b) Electrical conductivity of wadsleyite at high temperatures and high pressures. Earth Planet Sci Lett 287:277-83 CrossRef
    11. Dai L, Karato S (2009c) Electrical conductivity of pyrope-rich garnet at high temperature and high pressure. Phys Earth Planet Inter 176:83-8 CrossRef
    12. Dai L, Li H, Hu H, Shan S (2008) Experimental study of grain boundary electrical conductivities of dry synthetic peridotite under high-temperature, high-pressure, and different oxygen fugacity conditions. J Geophys Res 113:B12211 CrossRef
    13. Dai L, Li H, Hu H, Shan S, Jiang J, Hui K (2012) The effect of chemical composition and oxygen fugacity on the electrical conductivity of dry and hydrous garnet at high temperatures and pressures. Contrib Mineral Petrol 163(4):689-00 CrossRef
    14. Del Rio JA, Zimmerman RW, Dawe RA (1998) Formula for the conductivity of a two-component material based on the reciprocity theorem. Solid State Commun 106:183-86 CrossRef
    15. Dowty E (1980) Crystal-chemical factors affecting the mobility of ions in minerals. Am Mineral 65:174-82
    16. Duba A, Boland JN, Ringwood AE (1973) The electrical conductivity of pyroxene. J Geol 81:727-35 CrossRef
    17. Dvorák Z, Schloessin HH (1973) On the anisotropic electrical conductivity of enstatite as a function of pressure and temperature. Geophysics 38:25-6 CrossRef
    18. Eichler J, Lesniak C (2008) Boron nitride (BN) and BN composites for high-temperature applications. J Eur Ceram Soc 28(5):1105-109 CrossRef
    19. Eldin FME, Alaily NAE (1998) Electrical conductivity of some alkali silicate glasses. Mater Chem Phys 52:175-79 CrossRef
    20. Farla R, Peach C, ten Grotenhuis SM (2010) Electrical conductivity of synthetic iron-bearing olivine. Phys Chem Minerals 37:167-78 CrossRef
    21. Fuji-ta K, Katsura T, Tainosho Y (2004) Electrical conductivity measurement of granulite under mid- to lower crustal pressure-temperature conditions. Geophys J Int 157:79-6 CrossRef
    22. Fuji-ta K, Katsura T, Matsuzaki T, Ichiki M, Kobayashi T (2007) Electrical conductivity measurement of gneiss under mid-to lower crustal P-T conditions. Tectonophysics 434:93-01 CrossRef
    23. Guseinov AA, Gargatsev IO (2002) Electrical conductivity of alkaline feldspars at high temperatures. Izv Phys Solid Earth 38:520-23
    24. Hashin Z, Shtrikman S (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33:3125-131 CrossRef
    25. Henderson P, Nolan J, Cunningham GC, Lowry RK (1985) Structural controls and mechanisms of diffusion in natural silicate melts. Contrib Mineral Petrol 89:263-72 CrossRef
    26. Hirsch LM, Shankland TJ, Duba AG (1993) Electrical conductivity and polaron mobility in Fe-bearing olivine. Geophys J Int 114:36-4 CrossRef
    27. Hu H, Li H, Dai L, Shan S, Zhu C (2011) Electrical conductivity of albite at high temperatures and high pressures. Am Mineral 96:1821-827 CrossRef
    28. Huebner JS, Dillenburg RG (1995) Impedance spectra of hot, dry silicate minerals and rock: qualitative interpretation of spectra. Am Mineral 80:46-4
    29. Jain H, Nowick AS (1982) Electrical conductivity of synthetic and natural quartz crystals. J Appl Phys 53:477-84 CrossRef
    30. Jones A, Islam MS, Mortimer M, Palmer D (2004) Alkali ion migration in albite and K-feldspar. Phys Chem Minerals 31:313-20 CrossRef
    31. Khitarov N, Slutskiy A (1965) The effect of pressure on the melting temperatures of albite and basalt (based on electroconductivity measurements). Geochem Int 2:1034-042
    32. Landauer R (1952) The electrical resistance of binary metallic mixtures. J Appl Phys 23:779-84 CrossRef
    33. Li H, Xie H, Jie G, Zhang Y, Xu Z (1999) In situ control of oxygen fugacity at high temperature and high pressure. J Geopyhs Res 104:439-51
    34. Lin TH, Yund RA (1972) Potassium and sodium self-diffusion in alkali feldspar potassium and sodium self-diffusion in alkali feldspar. Contrib Mineral Petrol 34:177-84 CrossRef
    35. Liu L, Gorsey AE (2007) High-pressure phase transitions of the feldspars, and further characterization of lingunite. Int Geol Rev 49:854-60 CrossRef
    36. Liu W, Du J, Yong Y, Bai P, Wang C (2003) Correction of temperature gradient in sample cell of pulse transmission experimental setup on multi-anvil high pressure apparatus. Chin J High Pressure Phys 17:95-00
    37. Maury R (1968a) Conductivilite electrique des tectosilicates. I. Methode des resultats experimentaux. Bulletin de la Societe Francaise de Mineralogie et Cristallographie 91:267-78
    38. Maury R (1968b) Conductivilite electrique des tectosilicates. II. Discussion des resultats. Bulletin de la Societe Francaise de Mineralogie et Cristallographie 91:355-66
    39. Mizutani H, Kanamori H (1967) Electrical conductivities of rock-forming minerals at high temperatures. J Phys Earth 15:25-1 CrossRef
    40. Ni H, Keppler H, Manthilake M, Katsura T (2011) Electrical conductivity of dry and hydrous NaAlSi3O8 glasses and liquids at high pressures. Contrib Mineral Petrol 162(3):501-13 CrossRef
    41. Noritomi K (1955) Studies on the change of electrical conductivity with temperature of a few silicate minerals. Science Reports Tohoku Univ Ser 5(6):119-26
    42. Ohashi Y (1976) Lattice energy of some silicate minerals and the effect of oxygen bridging in relation to crystallization sequence. Carnegie Inst Wash Year Book 75:644-48
    43. Olhoeft G (1981) Electrical properties of granite with implications for the lower crust. J Geopyhs Res 86(B2):931-36 CrossRef
    44. Omura K, Kurita K, Kumazawa M (1989) Experimental study of pressure dependence of electrical conductivity of olivine at high temperatures. Phys Earth Planet Inter 57:291-03 CrossRef
    45. Parkhomenko E (1982) Electrical resistivity of minerals and rocks at high temperature and pressure. Rev Geophys 20:193-18 CrossRef
    46. Piwinskii AJ, Duba A (1974) High temperature electrical conductivity of albite. Geophys Res Lett 1:209-11 CrossRef
    47. Piwinskii AJ, Duba A, Ho P (1977) The electrical conductivity of low and high albite throughout its melting interval at 100?kPa. Can Mineral 15:196-97
    48. Poe B, Romano C, Nestola F, Smyth JR (2010) Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa. Phys Earth Planet Inter 181:103-11 CrossRef
    49. Roberts JJ, Tyburczy JA (1991) Frequency dependent electrical properties of polycrystalline olivine compacts. J Geopyhs Res 96:16205-6222 CrossRef
    50. Roberts JJ, Tyburczy JA (1993) Impedance spectroscopy of single and polycrystalline olivine: evidence for grain boundary transport. Phys Chem Minerals 20:19-6 CrossRef
    51. Romano C, Poe BT, Kreidie N, McCammon CA (2006) Electrical conductivities of pyrope-almandine garnets up to 19?GPa and 1700?°C. Am Mineral 91(8-):1371 CrossRef
    52. Schulgasser K (1976) Relationship between single-crystal and polycrystal electrical conductivity. J Appl Phys 47:1880-886 CrossRef
    53. Seifert KF, Will G, Voigt R (1982) Electrical conductivity measurements on synthetic pyroxenes MgSiO3-FeSiO3 at high pressures and temperatures under defined thermodynamic conditions. In: Schreyer W (ed) High-pressure researches in geoscience. Schweizerbart’sche, Stuttgart, pp 419-32
    54. Shan S, Wang R, Guo J, Li H (2007) Pressure calibration for the sample cell of YJ-3000t multi-anvil press at high temperature and high pressure. Chin J High Pressure Phys 21:367-72
    55. Shankland T, Duba A (1990) Standard electrical conductivity of isotropic, homogeneous olivine in the temperature range 1200-500?°C. Geophys J Int 103:25-1 CrossRef
    56. Tullis J, Yund RA (1977) Experimental deformation of dry Westerly granite. J Geopyhs Res 82(36):5705-718 CrossRef
    57. Tyburczy JA, Fisler DK (1995) Electrical properties of minerals and melts. In: Ahrens TJ (ed) Mineral physics and crystallography: a handbook of physical constants, Ref. Shelf, vol 2. AGU, Washington, DC, pp 185-08
    58. Verhoogen J (1952) Ionic diffusion and electrical conductivity in quartz. Am Mineral 37:637-55
    59. Wang D, Li H, Yi L, Matsuzaki T, Yoshino T (2010) Anisotropy of synthetic quartz electrical conductivity at high pressure and temperature. J Geopyhs Res 115:B09211 CrossRef
    60. Xu Y, Shankland TJ, Poe BT (2000) Laboratory-based electrical conductivity in the Earth’s mantle. J Geopyhs Res 105:827-65
    61. Yang X (2012) Orientation-related electrical conductivity of hydrous olivine, clinopyroxene and plagioclase and implications for the structure of the lower continental crust and uppermost mantle. Earth Planet Sci Lett 317-18:241-50 CrossRef
    62. Yang X, Heidelbach F (2012) Grain size effect on the electrical conductivity of clinopyroxene. Contrib Mineral Petrol 163(6):939-47 CrossRef
    63. Yang X, Keppler H, McCammon C, Ni H (2012) Electrical conductivity of orthopyroxene and plagioclase in the lower crust. Contrib Mineral Petrol 63:33-8 CrossRef
    64. Yoshino T (2010) Laboratory electrical conductivity measurement of mantle minerals. Surv Geophys 31:163-06 CrossRef
    65. Yoshino T, Katsura T (2009) Effect of iron content on electrical conductivity of ringwoodite, with implications for electrical structure in the transition zone. Phys Earth Planet Inter 174(1-):3- CrossRef
    66. Yoshino T, Matsuzaki T, Shatskiy A, Katsura T (2009) The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle. Earth Planet Sci Lett 288(1-):291-00 CrossRef
    67. Yoshino T, Ito E, Katsura T, Yamazaki D, Shan S, Guo X, Nishi M, Higo Y, Funakoshi K (2011) Effect of iron content on electrical conductivity of ferropericlase with implications for the spin transition pressure. J Geopyhs Res 116(B4):B04202 CrossRef
    68. Yoshino T, Shimojuku A, Shan S, Guo X, Yamazaki D, Ito E, Higo Y, Funakoshi K (2012) Effect of temperature, pressure and iron content on the electrical conductivity of olivine and its high-pressure polymorphs. J Geopyhs Res 117(B8):B08205 CrossRef
    69. Zhong H, Zhu WG, Hu RZ, Xie LW, He DF, Liu F, Chu ZY (2009) Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, southwest China and implications for growth of juvenile crust. Lithos 110:109-28 CrossRef
    70. Zhou L, Guo J, Liu B, Li L (2001) Structural state of adularia from Hishikari, Japan. Chinese Sci Bull 46:950-53 CrossRef
  • 作者单位:Haiying Hu (1)
    Heping Li (1)
    Lidong Dai (1)
    Shuangming Shan (1)
    Chengming Zhu (1)

    1. Laboratory for High Temperature and High Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, Guizhou, China
  • ISSN:1432-2021
文摘
The electrical conductivities of alkali feldspar solid solutions ranging in chemical composition from albite (NaAlSi3O8) to K-feldspar (KAlSi3O8) were measured at 1.0?GPa and temperatures of 873-,173?K in a multi-anvil apparatus. The complex impedance was determined by the AC impedance spectroscopy technique in the frequency range of 0.1-06?Hz. Our experimental results revealed that the electrical conductivities of alkali feldspar solid solutions increase with increasing temperature, and the linear relationship between electrical conductivity and temperature fits the Arrhenius formula. The electrical conductivities of solid solutions increase with the increasing Na content at constant temperature. At 1.0 GPa, the activation enthalpy of solid solution series shows strong dependency on the composition, and there is an abrupt increase from the composition of Or40Ab60 to Or60Ab40, where it reaches a value of 0.96?eV. According to these results in this study, it is proposed that the dominant conduction mechanism in alkali feldspar solid solutions under high temperature and high pressure is ionic conduction. Furthermore, since the activation enthalpy is less than 1.0?eV for the alkali feldspar solid solutions, it is suggested to be a model where Na+ and K+ transport involves an interstitial mechanism for electrical conduction. The change of main charge carriers can be responsible for the abrupt increase in the activation energy for Or60Ab40. All electrical conductivity data were fitted by a general formula in order to show the dependence of activation enthalpy and pre-exponential factor on chemical composition. Combining our experimental results with the effective medium theory, we theoretically calculated the electrical conductivity of alkali feldspar granite, alkali feldspar quartz syenite, and alkali feldspar syenite with different mineral content and variable chemical composition of alkali feldspar at high temperatures at 1.0?GPa, and the calculated results are almost in agreement with previous experimental studies on silicate rocks.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700