A rapid fluorescence polarization-based method for genotypic detection of drug resistance in Mycobacterium tuberculosis
详细信息    查看全文
  • 作者:Yisuo Sun (1) (2)
    Shufen Li (3)
    Lin Zhou (4)
    Lin Zhou (3)
    Qiu Zhong (4)
    Shisong Fang (5)
    Tao Chen (4)
    Lijun Bi (6)
    Wai-Kin Mat (1)
    Cunyou Zhao (1) (3)
    Hong Xue (1) (2)
  • 关键词:Drug resistance ; Genotyping ; M. tuberculosis ; One Label Extension ; DNA diagnostics
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:98
  • 期:9
  • 页码:4095-4105
  • 全文大小:394 KB
  • 参考文献:1. Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR Jr (1994) / inhA, a gene encoding a target for isoniazid and ethionamide in / Mycobacterium tuberculosis. Science 263(5144):227-30. doi:10.1126/science.8284673 CrossRef
    2. Brossier F, Veziris N, Aubry A, Jarlier V, Sougakoff W (2010) Detection by GenoType MTBDR / sl test of complex mechanisms of resistance to second-line drugs and ethambutol in multidrug-resistant / Mycobacterium tuberculosis complex isolates. J Clin Microbiol 48(5):1683-689. doi:10.1128/JCM.01947-09 CrossRef
    3. Canetti G, Fox W, Khomenko A, Mahler HT, Menon NK, Mitchison DA, Rist N, Smelev NA (1969) Advances in techiques of testing myobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull W H O 41:21-3
    4. Caws M, Drobniewski FA (2001) Molecular techniques in the diagnosis of / Mycobacterium tuberculosis and the detection of drug resistance. Ann NY Acad Sci 953:138-45. doi:10.1111/j.1749-6632.2001.tb11371.x CrossRef
    5. Choi JH, Lee KW, Kang HR, Hwang YI, Jang S, Kim DG, Kim CH, Hyun IG, Shin TR, Park SM, Lee MG, Lee CY, Park YB, Jung KS (2010) Clinical efficacy of direct DNA sequencing analysis on sputum specimens for early detection of drug-resistant / Mycobacterium tuberculosis in a clinical setting. Chest 137(2):393-00. doi:10.1378/chest.09-0150 CrossRef
    6. Engstr?m A, Morcillo N, Imperiale B, Hoffner SE, Juréen P (2012) Detection of first- and second-line drug resistance in / Mycobacterium tuberculosis clinical isolates by pyrosequencing. J Clin Microbiol 50(6):2026-033. doi:10.1128/JCM.06664-11 CrossRef
    7. Georghiou SB, Magana M, Garfein RS, Catanzaro DG, Catanzaro A, Rodwell TC (2012) Evaluation of genetic mutations associated with / Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: a systematic review. PLoS One 7(3):e33275. doi:10.1371/journal.pone.0033275 CrossRef
    8. Huang WL, Chi TL, Wu MH, Jou R (2011) Performance assessment of the GenoType MTBDR / sl test and DNA sequencing for detection of second-line and ethambutol drug resistance among patients infected with multidrug-resistant / Mycobacterium tuberculosis. J Clin Microbiol 49(7):2502-508. doi:10.1128/JCM.00197-11 CrossRef
    9. Kapur V, Li LL, Iordanescu S, Hamrick MR, Wanger A, Kreiswirth BN, Musser JM (1994) Characterization by automated DNA sequencing of mutations in the gene (rpoB) encoding the RNA polymerase β subunit in rifampin-resistant / Mycobacterium tuberculosis strains from New York City and Texas. J Clin Microbiol 32(4):1095-098
    10. Lawn SD, Nicol MP (2011) Xpert? MTB/RIF assay: development, evaluation and implementation of a new rapid molecular diagnostic for tuberculosis and rifampicin resistance. Future Microbiol 6(9):1067-082. doi:10.2217/fmb.11.84 CrossRef
    11. Lee AS, Ong DC, Wong JC, Siu GK, Yam WC (2012) High-resolution melting analysis for the rapid detection of fluoroquinolone and streptomycin resistance in / Mycobacterium tuberculosis. PLoS One 7(2):e31934. doi:10.1371/journal.pone.0031934 CrossRef
    12. Li J, Xin J, Zhang L, Jiang L, Cao H, Li L (2012) Rapid detection of / rpoB mutations in rifampin resistant / M. tuberculosis from sputum samples by denaturing gradient gel electrophoresis. Int J Med Sci 9(2):148-56. doi:10.7150/ijms.3605 CrossRef
    13. Ling DI, Zwerling AA, Pai M (2008) GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: a meta-analysis. Eur Respir J 32(5):1165-174. doi:10.1183/09031936.00061808 CrossRef
    14. Lipin MY, Stepanshina VN, Shemyakin IG, Shinnick TM (2007) Association of specific mutations in / katG, / rpoB, / rpsL and / rrs genes with spoligotypes of multidrug-resistant / Mycobacterium tuberculosis isolates in Russia. Clin Microbiol Infect 13(6):620-26. doi:10.1111/j.1469-0691.2007.01711.x CrossRef
    15. Marín M, García de Viedma D, Ruíz-Serrano MJ, Bouza E (2004) Rapid direct detection of multiple rifampin and isoniazid resistance mutations in / Mycobacterium tuberculosis in respiratory samples by real-time PCR. Antimicrob Agents Chemother 48(11):4293-300. doi:10.1128/AAC.48.11.4293-4300.2004 CrossRef
    16. Mokrousov I, Bhanu NV, Suffys PN, Kadival GV, Yap SF, Cho SN, Jordaan AM, Narvskaya O, Singh UB, Gomes HM, Lee H, Kulkarni SP, Lim KC, Khan BK, van Soolingen D, Victor TC, Schouls LM (2004) Multicenter evaluation of reverse line blot assay for detection of drug resistance in / Mycobacterium tuberculosis clinical isolates. J Microbiol Methods 57(3):323-35. doi:10.1016/j.mimet.2004.02.006 CrossRef
    17. Newcombe RG (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med 17(8):857-72. doi:10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E CrossRef
    18. Nickerson DA, Tobe VO, Taylor SL (1997) PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res 25(14):2745-751. doi:10.1093/nar/25.14.2745 CrossRef
    19. Nicol MP (2010) New developments in the laboratory diagnosis of tuberculosis. Continu Med Educ 28:246-50
    20. O’Grady J, Maeurer M, Mwaba P, Kapata N, Bates M, Hoelscher M, Zumla A (2011) New and improved diagnostics for detection of drug-resistant pulmonary tuberculosis. Curr Opin Pulm Med 17(3):134-41. doi:10.1097/MCP.0b013e3283452346 CrossRef
    21. Pérez-Osorio AC, Boyle DS, Ingham ZK, Ostash A, Gautom RK, Colombel C, Houze Y, Leader BT (2012) Rapid identification of mycobacteria and drug-resistant / Mycobacterium tuberculosis by use of a single multiplex PCR and DNA sequencing. J Clin Microbiol 50(2):326-36. doi:10.1128/JCM.05570-11 CrossRef
    22. Pai M, Minion J, Sohn H, Zwerling A, Perkins MD (2009) Novel and improved technologies for tuberculosis diagnosis: progress and challenges. Clin Chest Med 30(4):701-16. doi:10.1016/j.ccm.2009.08.016 , viii CrossRef
    23. Plinke C, Walter K, Aly S, Ehlers S, Niemann S (2011) / Mycobacterium tuberculosis embB codon 306 mutations confer moderately increased resistance to ethambutol / in vitro and / in vivo. Antimicrob Agents Chemother 55(6):2891-896. doi:10.1128/AAC.00007-10 CrossRef
    24. Ramasubban G, Therese KL, Vetrivel U, Sivashanmugam M, Rajan P, Sridhar R, Madhavan HN, Meenakshi N (2011) Detection of novel coupled mutations in the / katG gene (His276Met, Gln295His and Ser315Thr) in a multidrug-resistant / Mycobacterium tuberculosis strain from Chennai, India, and insight into the molecular mechanism of isoniazid resistance using structural bioinformatics approaches. Int J Antimicrob Agents 37(4):368-72. doi:10.1016/j.ijantimicag.2010.11.023 CrossRef
    25. Roberts GD, Goodman NL, Heifets L, Larsh HW, Lindner TH, McClatchy JK, McGinnis MR, Siddiqi SH, Wright P (1983) Evaluation of the BACTEC radiometric method for recovery of mycobacteria and drug susceptibility testing of / Mycobacterium tuberculosis from acid-fast smear-positive specimens. J Clin Microbiol 18(3):689-96
    26. Safi H, Sayers B, Hazbón MH, Alland D (2008) Transfer of / embB codon 306 mutations into clinical / Mycobacterium tuberculosis strains alters susceptibility to ethambutol, isoniazid, and rifampin. Antimicrob Agents Chemother 52(6):2027-034. doi:10.1128/AAC.01486-07 CrossRef
    27. Sch?n T, Juréen P, Giske CG, Chryssanthou E, Stureg?rd E, Werngren J, Kahlmeter G, Hoffner SE, Angeby KA (2009) Evaluation of wild-type MIC distributions as a tool for determination of clinical breakpoints for / Mycobacterium tuberculosis. J Antimicrob Chemother 64(4):786-93. doi:10.1093/jac/dkp262 CrossRef
    28. Sekiguchi J, Miyoshi-Akiyama T, Augustynowicz-Kope? E, Zwolska Z, Kirikae F, Toyota E, Kobayashi I, Morita K, Kudo K, Kato S, Kuratsuji T, Mori T, Kirikae T (2007) Detection of multidrug resistance in / Mycobacterium tuberculosis. J Clin Microbiol 45(1):179-92. doi:10.1128/JCM.00750-06 CrossRef
    29. Spies FS, von Groll A, Ribeiro AW, Ramos DF, Ribeiro MO, Dalla Costa ER, Martin A, Palomino JC, Rossetti ML, Zaha A, da Silva PE (2013) Biological cost in / Mycobacterium tuberculosis with mutations in the / rpsL, / rrs, / rpoB, and / katG genes. Tuberculosis (Edinb) 93(2):150-54. doi:10.1016/j.tube.2012.11.004 CrossRef
    30. Sreevatsan S, Pan X, Stockbauer KE, Williams DL, Kreiswirth BN, Musser JM (1996) Characterization of / rpsL and / rrs mutations in streptomycin-resistant / Mycobacterium tuberculosis isolates from diverse geographic localities. Antimicrob Agents Chemother 40(4):1024-026
    31. Sreevatsan S, Stockbauer KE, Pan X, Kreiswirth BN, Moghazeh SL, Jacobs WR Jr, Telenti A, Musser JM (1997) Ethambutol resistance in / Mycobacterium tuberculosis: critical role of / embB mutations. Antimicrob Agents Chemother 41(8):1677-681
    32. Tang X, Morris SL, Langone JJ, Bockstahler LE (2005) Microarray and allele specific PCR detection of point mutations in / Mycobacterium tuberculosis genes associated with drug resistance. J Microbiol Methods 63(3):318-30. doi:10.1016/j.mimet.2005.04.026 CrossRef
    33. Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, Matter L, Schopfer K, Bodmer T (1993) Detection of rifampicin-resistance mutations in / Mycobacterium tuberculosis. Lancet 341(8846):647-50. doi:10.1016/0140-6736(93)90417-F CrossRef
    34. Tracevska T, Jansone I, Nodieva A, Marga O, Skenders G, Baumanis V (2004) Characterisation of / rpsL, / rrs and / embB mutations associated with streptomycin and ethambutol resistance in / Mycobacterium tuberculosis. Res Microbiol 155(10):830-34. doi:10.1016/j.resmic.2004.06.007 CrossRef
    35. Van Rie A, Page-Shipp L, Scott L, Sanne I, Stevens W (2010) Xpert? MTB/RIF for point-of-care diagnosis of TB in high-HIV burden, resource-limited countries: hype or hope? Expert Rev Mol Diagn 10(7):937-46. doi:10.1586/erm.10.67 CrossRef
    36. WHO (1998a) Laboratory services in tuberculosis control. Part II: microscopy. WHO/TB/98.258. World Heath Organization, Geneva, Switzerland. http://www.who.int/tb/publications/who_tb_98_258/en/
    37. WHO (1998b) Laboratory services in tuberculosis control. Part III: culture. WHO/TB/98.258. World Health Organization, Geneva, Switzerland. http://www.who.int/tb/publications/who_tb_98_258/en/
    38. WHO (2008a) Molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis (MDR-TB). World Health Organization, Geneva, Switzerland. http://www.who.int/tb/features_archive/policy_statement.pdf
    39. WHO (2008b) Policy guidance on drug-susceptibility testing (DST) of second-line antituberculosis drugs. WHO/HTM/TB/2008.392. World Health Organization, Geneva, Switzerland. http://www.who.int/tb/publications/2008/whohtmtb_2008_392/en/
    40. WHO (2008c) WHO report 2008. Global tuberculosis control: surveillance, planning, financing. WHO/HTM/TB/2008.393. World Health Organization, Geneva, Switzerland. http://www.who.int/tb/publications/global_report/2008/en/
    41. WHO (2010) Tuberculosis diagnostics automated DNA test. WHO endorsement and recommendations. World Health Organization, Geneva, Switzerland. http://www.who.int/tb/features_archive/xpert_factsheet.pdf
    42. Yu Z, Chen J, Shi H, Stoeber G, Tsang SY, Xue H (2006) Analysis of / GABRB2 association with schizophrenia in German population with DNA sequencing and one-label extension method for SNP genotyping. Clin Biochem 39(3):210-18. doi:10.1016/j.clinbiochem.2006.01.009 CrossRef
    43. Zhang Y, Heym B, Allen B, Young D, Cole S (1992) The catalase-peroxidase gene and isoniazid resistance of / Mycobacterium tuberculosis. Nature 358(6387):591-93. doi:10.1038/358591a0 CrossRef
  • 作者单位:Yisuo Sun (1) (2)
    Shufen Li (3)
    Lin Zhou (4)
    Lin Zhou (3)
    Qiu Zhong (4)
    Shisong Fang (5)
    Tao Chen (4)
    Lijun Bi (6)
    Wai-Kin Mat (1)
    Cunyou Zhao (1) (3)
    Hong Xue (1) (2)

    1. Division of Life Science and Applied Genomics Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
    2. Nano Science and Nano Technology Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
    3. Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
    4. Antituberculosis Research Institute of Guangdong Province, Guangzhou, 510630, China
    5. Division of Microbiology Test, Shenzhen NanShan Centre for Disease Control and Prevention, Shenzhen, 518055, China
    6. National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
  • ISSN:1432-0614
文摘
Rapid detection of drug-resistant Mycobacterium tuberculosis is critical to the effective early treatment and prevention of the transmission of tuberculosis. However, conventional drug susceptibility tests for M. tuberculosis require up to several weeks. In the present study, the One Label Extension genotyping method was adapted for rapid detection of drug resistance-associated sequence variations in six genes of M. tuberculosis, viz. rpoB, rpsL, rrs, embB, katG, or inhA. The method utilizes polymerase chain reaction amplified fragments of the drug resistant genes as reaction templates, and proceeds with template-directed primer extension incorporating a fluorescence-labeled nucleotide, which is then measured by fluorescence polarization. A total of 121 M. tuberculosis isolates from clinical sputum specimens were examined by this genotyping method and verified by direct sequencing of polymerase chain reaction amplicons harboring previously reported mutational sites associated with M. tuberculosis drug resistance. Based on phenotyping results obtained from microbiology-based drug susceptibility tests, the sensitivity, specificity, and test efficiency estimated for One Label Extension assays were respectively 83.9?%, 95.5?%, and 92.4?% with ropB in rifampin resistance, 67.3?%, 97.1?%, and 84.3?% with rpsL and rrs in streptomycin resistance, 60.0?%, 96.0?%, and 91.4?% with embB in ethambutol resistance, 68.4?%, 94.9?%, and 86.3?% with inhA and katG in isoniazid resistance, and 74.1?%, 98.9?%, and 93.2?% in multiple drug resistance defined as resistance to at least both isoniazid and rifampin. In conclusion, examination of clinical sputum specimens by One Label Extension based genotyping provides a valid method for the rapid molecular detection of drug-resistant M. tuberculosis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700