Genomic analysis of Staphylococcus phage Stau2 isolated from medical specimen
详细信息    查看全文
  • 作者:Sue-Er Hsieh ; Yi-Hsiung Tseng ; Hsueh-Hsia Lo ; Shui-Tu Chen ; Cheng-Nan Wu
  • 关键词:Staphylococcus aureus ; Staphylococcus phage ; Phage genome
  • 刊名:Virus Genes
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:52
  • 期:1
  • 页码:107-116
  • 全文大小:917 KB
  • 参考文献:1.Z. Kazmierczak, A. Gorski, K. Dabrowska, Viruses 6, 2551–2570 (2014)PubMedCentral CrossRef PubMed
    2.R.E. Mendes, M. Mendoza, K.K. Banga Singh, M. Castanheira, K.K. Bell, J.D. Turnidge, S.S. Lin, R.N. Jones, Antimicrob. Agents Chemother. 57, 5721–5726 (2013)PubMedCentral CrossRef PubMed
    3.P.A. Barrow, J.S. Soothill, Trends Microbiol. 5, 268–271 (1997)CrossRef PubMed
    4.J.A. Marza, J.S. Soothill, P. Boydell, T.A. Collyns, Burns 32, 644–646 (2006)CrossRef PubMed
    5.S. O’Flaherty, A. Coffey, W. Meaney, G.F. Fitzgerald, R.P. Ross, J. Bacteriol. 187, 7161–7164 (2005)PubMedCentral CrossRef PubMed
    6.S. O’Flaherty, R.P. Ross, W. Meaney, G.F. Fitzgerald, M.F. Elbreki, A. Coffey, Appl. Environ. Microbiol. 71, 1836–1842 (2005)PubMedCentral CrossRef PubMed
    7.R. Lavigne, M.V. Burkal’tseva, J. Robben, N.N. Sykilinda, L.P. Kurochkina, B. Grymonprez, B. Jonckx, V.N. Krylov, V.V. Mesyanzhinov, G. Volckaert, Virology 312, 49–59 (2003)CrossRef PubMed
    8.N.N. Zhukov-Verezhnikov, L.D. Peremitina, E.A. Berillo, V.P. Komissarov, V.M. Bardymov, Sov. Med. 12, 64–66 (1978)PubMed
    9.S.E. Hsieh, H.H. Lo, S.T. Chen, M.C. Lee, Y.H. Tseng, Appl. Environ. Microbiol. 77, 756–761 (2011)PubMedCentral CrossRef PubMed
    10.T. Bae, T. Baba, K. Hiramatsu, O. Schneewind, Mol. Microbiol. 62, 1035–1047 (2006)CrossRef PubMed
    11.J. Sambrook, D.W. Russell, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2001)
    12.M.J. Loessner, R.B. Inman, P. Lauer, R. Calendar, Mol. Microbiol. 35, 324–340 (2000)CrossRef PubMed
    13.J. Klumpp, J. Dorscht, R. Lurz, R. Bielmann, M. Wieland, M. Zimmer, R. Calendar, M.J. Loessner, J. Bacteriol. 190, 5753–5765 (2008)PubMedCentral CrossRef PubMed
    14.P. Rice, I. Longden, A. Bleasby, Trends Genet 16, 276–277 (2000)CrossRef PubMed
    15.M. Landthaler, D.A. Shub, Proc. Natl. Acad. Sci. USA 96, 7005–7010 (1999)PubMedCentral CrossRef PubMed
    16.M. Kuroda, T. Ohta, I. Uchiyama, T. Baba, H. Yuzawa, I. Kobayashi, L. Cui, A. Oguchi, K. Aoki, Y. Nagai, J. Lian, T. Ito, M. Kanamori, H. Matsumaru, A. Maruyama, H. Murakami, A. Hosoyama, Y. Mizutani-Ui, N.K. Takahashi, T. Sawano, R. Inoue, C. Kaito, K. Sekimizu, H. Hirakawa, S. Kuhara, S. Goto, J. Yabuzaki, M. Kanehisa, A. Yamashita, K. Oshima, K. Furuya, C. Yoshino, T. Shiba, M. Hattori, N. Ogasawara, H. Hayashi, K. Hiramatsu, Lancet 357, 1225–1240 (2001)CrossRef PubMed
    17.M.S. Kim, H. Myung, J. Virol. 86, 10232 (2012)PubMedCentral CrossRef PubMed
    18.T. Kwan, J. Liu, M. DuBow, P. Gros, J. Pelletier, Proc. Natl. Acad. Sci. USA 102, 5174–5179 (2005)PubMedCentral CrossRef PubMed
    19.K. Vandersteegen, A.M. Kropinski, J.H. Nash, J.P. Noben, K. Hermans, R. Lavigne, J. Virol. 87, 3237–3247 (2013)PubMedCentral CrossRef PubMed
    20.T.M. Lowe, S.R. Eddy, Nucleic Acids Res. 25, 955–964 (1997)PubMedCentral CrossRef PubMed
    21.S. O’Flaherty, A. Coffey, R. Edwards, W. Meaney, G.F. Fitzgerald, R.P. Ross, J. Bacteriol. 186, 2862–2871 (2004)PubMedCentral CrossRef PubMed
    22.K. Vandersteegen, W. Mattheus, P.J. Ceyssens, F. Bilocq, D. De Vos, J.P. Pirnay, J.P. Noben, M. Merabishvili, U. Lipinska, K. Hermans, R. Lavigne, PLoS One 6, e24418 (2011)PubMedCentral CrossRef PubMed
    23.L.W. Black, Annu. Rev. Microbiol. 43, 267–292 (1989)CrossRef PubMed
    24.R.G. Nitharwal, S. Paul, A. Dar, N.R. Choudhury, R.K. Soni, D. Prusty, S. Sinha, T. Kashav, G. Mukhopadhyay, T.K. Chaudhuri, S. Gourinath, S.K. Dhar, Nucleic Acids Res. 35, 2861–2874 (2007)PubMedCentral CrossRef PubMed
    25.J.S. Sussenbach, C.H. Monfoort, R. Schiphof, E.E. Stobberingh, Nucleic Acids Res. 3, 3193–3202 (1976)PubMedCentral CrossRef PubMed
    26.J.S. Sussenbach, P.H. Steenbergh, J.A. Rost, W.J. van Leeuwen, J.D. van Embden, Nucleic Acids Res. 5, 1153–1163 (1978)PubMedCentral CrossRef PubMed
    27.A. Marchler-Bauer, C. Zheng, F. Chitsaz, M.K. Derbyshire, L.Y. Geer, R.C. Geer, N.R. Gonzales, M. Gwadz, D.I. Hurwitz, C.J. Lanczycki, F. Lu, S. Lu, G.H. Marchler, J.S. Song, N. Thanki, R.A. Yamashita, D. Zhang, S.H. Bryant, Nucleic Acids Res. 41, D348–352 (2013)PubMedCentral CrossRef PubMed
    28.M. Burian, M. Rautenberg, T. Kohler, M. Fritz, B. Krismer, C. Unger, W.H. Hoffmann, A. Peschel, C. Wolz, C. Goerke, J. Infect. Dis. 201, 1414–1421 (2010)CrossRef PubMed
    29.M.R. Stapleton, M.J. Horsburgh, E.J. Hayhurst, L. Wright, I.M. Jonsson, A. Tarkowski, J.F. Kokai-Kun, J.J. Mond, S.J. Foster, J. Bacteriol. 189, 7316–7325 (2007)PubMedCentral CrossRef PubMed
    30.M. Landthaler, U. Begley, N.C. Lau, D.A. Shub, Nucleic Acids Res. 30, 1935–1943 (2002)PubMedCentral CrossRef PubMed
    31.D. Greenstein, N.D. Zinder, K. Horiuchi, Proc. Natl. Acad. Sci. USA 85, 6262–6266 (1988)PubMedCentral CrossRef PubMed
    32.T.W. Lynch, E.K. Read, A.N. Mattis, J.F. Gardner, P.A. Rice, J. Mol. Biol. 330, 493–502 (2003)CrossRef PubMed
    33.I. Katsura, Nature 327, 73–75 (1987)CrossRef PubMed
    34.E. Kutter, K. Gachechiladze, A. Poglazov, E. Marusich, M. Shneider, P. Aronsson, A. Napuli, D. Porter, V. Mesyanzhinov, Virus Genes 11, 285–297 (1995)CrossRef PubMed
    35.L. Sandegren, D. Nord, B.M. Sjoberg, Nucleic Acids Res. 33, 6203–6213 (2005)PubMedCentral CrossRef PubMed
    36.M.J. Loessner, S. Scherer, J. Bacteriol. 177, 6601–6609 (1995)PubMedCentral PubMed
    37.J. Uchiyama, M. Rashel, Y. Maeda, I. Takemura, S. Sugihara, K. Akechi, A. Muraoka, H. Wakiguchi, S. Matsuzaki, FEMS Microbiol. Lett. 278, 200–206 (2008)CrossRef PubMed
    38.A. Ben-Bassat, K. Bauer, S.Y. Chang, K. Myambo, A. Boosman, S. Chang, J. Bacteriol. 169, 751–757 (1987)PubMedCentral PubMed
    39.K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, Mol. Biol. Evol. 28, 2731–2739 (2011)PubMedCentral CrossRef PubMed
    40.R. Lavigne, P. Darius, E.J. Summer, D. Seto, P. Mahadevan, A.S. Nilsson, H.W. Ackermann, A.M. Kropinski, BMC Microbiol. 9, 224 (2009)PubMedCentral CrossRef PubMed
    41.T. Baba, T. Bae, O. Schneewind, F. Takeuchi, K. Hiramatsu, J. Bacteriol. 190, 300–310 (2008)PubMedCentral CrossRef PubMed
    42.M.J. Schijffelen, C.H. Boel, J.A. van Strijp, A.C. Fluit, BMC Genom. 11, 376 (2010)CrossRef
  • 作者单位:Sue-Er Hsieh (1)
    Yi-Hsiung Tseng (2)
    Hsueh-Hsia Lo (1)
    Shui-Tu Chen (3)
    Cheng-Nan Wu (1)

    1. Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
    2. Department of Microbiology, Tzu Chi University, Hualien, 970, Taiwan
    3. Pediatrics Department, Nantou Hospital, Department of Health, Nantou, 540, Taiwan
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Medical Microbiology
    Virology
    Plant Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-994X
文摘
Stau2 is a lytic myophage of Staphylococcus aureus isolated from medical specimen. Exhibiting a broad host range against S. aureus clinical isolates, Stau2 is potentially useful for topical phage therapy or as an additive in food preservation. In this study, Stau2 was firstly revealed to possess a circularly permuted linear genome of 133,798 bp, with low G + C content, containing 146 open reading frames, but encoding no tRNA. The genome is organized into several modules containing genes for packaging, structural proteins, replication/transcription and host-cell-lysis, with the structural proteins and DNA polymerase modules being organized similarly to that in Twort-like phages of Staphylococcus. With the encoded DNA replication genes, Stau2 can possibly use its own system for replication. In addition, analysis in silico found several introns in seven genes, including those involved in DNA metabolism, packaging, and structure, while one of them (helicase gene) is experimentally confirmed to undergo splicing. Furthermore, phylogenetic analysis suggested Stau2 to be most closely related to Staphylococcus phages SA11 and Remus, members of Twort-like phages. The results of sodium dodecyl sulfate polyacrylamide gel electrophoresis showed 14 structural proteins of Stau2 and N-terminal sequencing identified three of them. Importantly, this phage does not encode any proteins which are known or suspected to be involved in toxicity, pathogenicity, or antibiotic resistance. Therefore, further investigations of feasible therapeutic application of Stau2 are needed. Keywords Staphylococcus aureus Staphylococcus phage Phage genome

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700