Pigmentation in sand pear (Pyrus pyrifolia) fruit: biochemical characterization, gene discovery and expression analysis with exocarp pigmentation mutant
详细信息    查看全文
  • 作者:Yue-zhi Wang (1)
    Shujun Zhang (1) (2)
    Mei-song Dai (1)
    Ze-bin Shi (1)
  • 关键词:Exocarp pigmentation ; Cork layer ; Lignin ; Bud mutant ; Sand pear (Pyrus pyrifolia)
  • 刊名:Plant Molecular Biology
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:85
  • 期:1-2
  • 页码:123-134
  • 全文大小:
  • 参考文献:1. Alejandro S, Lee Y, Tohge T, Sudre D, Osorio S, Park J, Bovet L, Lee Y, Geldner N, Fernie AR, Martinoia E (2012) AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr Biol 22(13):1207-212 CrossRef
    2. Anai T, Koga M, Tanaka H, Kinoshita T, Rahman SM, Takagi Y (2003) Improvement of rice ( / Oryza sativa L.) seed oil quality through introduction of a soybean microsomal omega-3 fatty acid desaturase gene. Plant Cell Rep 21(10):988-92 CrossRef
    3. Bird D, Beisson F, Brigham A, Shin J, Greer S, Jetter R, Kunst L, Wu XW, Yephremov A, Samuels L (2007) Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J 52(3):485-98 CrossRef
    4. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519-46 CrossRef
    5. Chen W, VanOpdorp N, Fitzl D, Tewari J, Friedemann P, Greene T, Thompson S, Kumpatla S, Zheng P (2012) Transposon insertion in a cinnamyl alcohol dehydrogenase gene is responsible for a brown midrib1 mutation in maize. Plant Mol Biol 80(3):289-97 CrossRef
    6. Compagnon V, Diehl P, Benveniste I, Meyer D, Schaller H, Schreiber L, Franke R, Pinot F (2009) CYP86B1 is required for very long chain ω-hydroxyacid and α, ω-dicarboxylic acid synthesis in root and seed suberin polyester. Plant Physiol 150(4):1831-843 CrossRef
    7. Franke R, McMichael CM, Meyer K, Shirley AM, Cusumano JC, Chapple C (2000) Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase. Plant J 22(3):223-34 CrossRef
    8. Fu Y, Shen L, Ma?K, Wang Y, Ji L, Chen J (1995) Preliminary study of the ‘peel-structure of cv. ‘Yali-Pear. In: Proceedings of the thirteenth annual conference of the fruit tree society, Hebei Province. Baoding, Hebei, China
    9. Girard AL, Mounet F, Lemaire-Chamley M, Gaillard C, Elmorjani K, Vivancos J, Runavot JL, Quemener B, Petit J, Germain V, Rothan C, Marion D, Bakan B (2012) Tomato GDSL1 is required for cutin deposition in the fruit cuticle. Plant Cell 24(7):3119-134 CrossRef
    10. Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B, Monties B, Edwards K, Barakate A, Foxon GA (1998) Brown-midrib maize (bm1)—a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 14:545-53 CrossRef
    11. H?fer R, Briesen I, Beck M, Pinot F, Schreiber L, Franke R (2008) The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid ω-hydroxylase involved in suberin monomer biosynthesis. J Exp Bot 59(9):2347-360 CrossRef
    12. Johansen DA (1940) Plant microtechniques. McGrawHill Book Company Inc, New York
    13. Jové P, Olivella à, Cano L (2011) Study of the variability in chemical composition of bark layers of / Quercus suber L. from different production areas. BioResources 6(2):1806-815
    14. Jung JH, Kim H, Go YS, Lee SB, Hur CG, Kim HU, Suh MC (2011) Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from / Brassica rapa and development of / Brassica napus containing high oleic acid contents. Plant Cell Rep 30(10):1881-892 CrossRef
    15. Kaur H, Shaker K, Heinzel N, Ralph J, Gális I, Baldwin IT (2012) Environmental stresses of field growth allow cinnamyl alcohol dehydrogenase-deficient / Nicotiana attenuata plants to compensate for their structural deficiencies. Plant Physiol 159(4):1545-570 CrossRef
    16. Kim D, Hwang J, Shin Y, Shin I, Lee H, Hong S, Kang S (2005) Development of molecular markers linked to several fruit traits in oriental pear. Acta Hortic 671:315-21
    17. Kim J, Jung JH, Lee SB, Go YS, Kim HJ, Cahoon R, Cahoon EB, Markham JE, Suh MC (2013) Arabidopsis 3-ketoacyl-CoA synthase 9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids. Plant Physiol 162(2):567-80 CrossRef
    18. Lee SB, Jung SJ, Go YS, Kim HU, Kim JK, Cho HJ, Park OK, Suh MC (2009) Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. Plant J 60(3):462-75 CrossRef
    19. Lefever S, Hellemans J, Pattyn F, Przybylski DR, Tayor C, Geurts R, Untergasser A, Vandesompele J (2009) RDML: structured language and reporting guide-lines for real-time quantitative PCR data. Nucleic Acids Res 37:2065-069 CrossRef
    20. Li-Beisson Y, Pollard M, Sauveplane V, Pinot F, Ohlrogge J, Beisson F (2009) Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. Proc Natl Acad Sci USA 106(51):22008-2013 CrossRef
    21. Liu P, Xue C, Wu T-t, Heng W, Jia B, Ye Z, Liu L, Zhu L (2013) Molecular analysis of the processes of surface brown spot (SBS) formation in pear fruit ( / Pyrus bretschneideri Rehd. cv. Dangshansuli) by de novo transcriptome assembly. PLoS ONE 8(9):e74217. doi:10.1371/journal.pone.0074217
    22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2???CT method. Methods 25:402-08 CrossRef
    23. Malnoy M, Faize M, Venisse J, Geider K, Chevreau E (2005) Expression of viral EPS-depolymerase reduces fire blight susceptibility in transgenic pear. Plant Cell Rep 23:632-38 CrossRef
    24. Mao B, Cheng Z, Lei C, Xu F, Gao S, Ren Y, Wang J, Zhang X, Wang J, Wu F, Guo X, Liu X, Wu C, Wang H, Wan J (2012) Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax. Planta 235(1):39-2 CrossRef
    25. Marita JM, Vermerris W, Ralph J, Hatfield RD (2003) Variations in the cell wall composition of maize brown midrib mutants. J Agric Food Chem 51(5):1313-321 CrossRef
    26. Marjamaa K, Kukkola EM, Fagerstedt KV (2009) The role of xylem class III peroxidases in lignification. J Exp Bot 60(2):367-76 CrossRef
    27. Matas AJ, Agustí J, Tadeo FR, Talón M, Rose JK (2010) Tissue-specific transcriptome profiling of the citrus fruit epidermis and subepidermis using laser capture microdissection. J Exp Bot 61(12):3321-330 CrossRef
    28. Meyer K, Shirley AM, Cusumano JC, Bell-Lelong DA, Chapple C (1998) Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis. Proc Natl Acad Sci USA 95(12):6619-623 CrossRef
    29. Miao YC, Liu CJ (2010) ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes. Proc Natl Acad Sci USA 107(52):22728-2733 CrossRef
    30. Mintz-Oron S, Mandel T, Rogachev I, Feldberg L, Lotan O, Yativ M, Wang Z, Jetter R, Venger I, Adato A, Aharoni A (2008) Gene expression and metabolism in tomato fruit surface tissues. Plant Physiol 147(2):823-51 CrossRef
    31. Molina I, Li-Beisson Y, Beisson F, Ohlrogge JB, Pollard M (2009) Identification of an Arabidopsis feruloyl-Co A transferase required for suberin synthesis. Plant Physiol 151(3):1317-328 CrossRef
    32. Panikashvili D, Aharoni A (2011) ABC-type transporters and cuticle assembly: linking function to polarity in epidermis cells. Plant Signal Behav 3(10):806-09 CrossRef
    33. Panikashvili D, Shi JX, Schreiber L, Aharoni A (2009) The Arabidopsis DCR encoding a soluble BAHD acyltransferase is required for cutin polyester formation and seed hydration properties. Plant Physiol 151(4):1773-789 CrossRef
    34. Pereira H (1988) Chemical composition and variability of cork from / Quercus suber L. Wood Sci Technol 22:211-18 CrossRef
    35. Pillonel C, Mulder MM, Boon JJ, Forster B, Binder A (1991) Involvement of cinnamyl-alcohol dehydrogenase in the control of lignin formation in / Sorghum bicolor L. Moench. Planta 185(4):538-44 CrossRef
    36. Prashant S, Srilakshmi Sunita M, Pramod S, Gupta RK, Anil Kumar S, Rao Karumanchi S, Rawal SK, Kavi Kishor PB (2011) Down-regulation of / Leucaena leucocephala cinnamoyl CoA reductase (LlCCR) gene induces significant changes in phenotype, soluble phenolic pools and lignin in transgenic tobacco. Plant Cell Rep 230(12):2215-231 CrossRef
    37. Provan GJ, Scobbie L, Chesson A (1997) Characterisation of lignin from CAD and OMT deficient Bm mutants of maize. J Sci Food Agric 73(2):133-42 CrossRef
    38. Rowland O, Lee R, Franke R, Schreiber L, Kunst L (2007) The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1. FEBS Lett 581(18):3538-544 CrossRef
    39. Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, New York
    40. Sattler SE, Saathoff AJ, Haas EJ, Palmer NA, Funnell-Harris DL, Sarath G, Pedersen JF (2009) A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the sorghum brown midrib6 phenotype. Plant Physiol 150(2):584-95 CrossRef
    41. Skyba O, Douglas CJ, Mansfield SD (2013) Syringyl-rich lignin renders poplars more resistant to degradation by wood decay fungi. Appl Environ Microbiol 79(8):2560-571 CrossRef
    42. Storey JD (2002) A direct approach to false discovery rates. J R Stat Soc Ser B (Stat Methodol) 64(3):479-98 CrossRef
    43. Todd J, Post-Beittenmiller D, Jaworski JG (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J 17(2):119-30 CrossRef
    44. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105-111 CrossRef
    45. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511-15 CrossRef
    46. Vander Mijnsbrugge K, Beeckman H, De Rycke R, Van Montagu M, Engler G, Boerjan W (2000) Phenylcoumaran benzylic ether reductase, a prominent poplar xylem protein, is strongly associated with phenylpropanoid biosynthesis in lignifying cells. Planta 211(4):502-09 CrossRef
    47. Vermerris W, Sherman DM, McIntyre LM (2010) Phenotypic plasticity in cell walls of maize brown midrib mutants is limited by lignin composition. J Exp Bot 61(9):2479-490 CrossRef
    48. Wagner A, Donaldson L, Kim H, Phillips L, Flint H, Steward D, Torr K, Koch G, Schmitt U, Ralph J (2009) Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm / Pinus radiata. Plant Physiol 149(1):370-83 CrossRef
    49. Wagner A, Tobimatsu Y, Goeminne G, Phillips L, Flint H, Steward D, Torr K, Donaldson L, Boerjan W, Ralph J (2013) Suppression of CCR impacts metabolite profile and cell wall composition in / Pinus radiata tracheary elements. Plant Mol Biol 81(1-):105-17 CrossRef
    50. Wang Y, Xu H, Zhang G, Zhu H, Zhang L, Zhang Z, Zhang C, Ma Z (2009) Expression and responses to dehydration and salinity stresses of V-PPase gene members in wheat. J Genet Genomics 36(12):711-20 CrossRef
    51. Wang Y, Dai M, Zhang S, Shi Z (2012) A review on pear bud sport breeding and research progress in mutant mechanisms. J Fruit Sci 29(4):676-82 (in Chinese)
    52. Wang Y, Dai M, Zhang S, Shi Z (2014) Exploring candidate genes for pericarp russet pigmentation of sand pear ( / Pyrus pyrifolia) via RNA-Seq data in two genotypes contrasting for pericarp color. PLoS ONE 9(1):e83675. doi:10.1371/journal.pone.0083675
    53. Wu P, Tian S, Xu Y (2009) Effects of controlled atmosphere on cell wall and cuticle composition and quality of jujube fruit (cv. Huping). Sci Agric Sin 42(2):619-25
    54. Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2013) The genome of the pear ( / Pyrus bretschneideri Rehd.). Genome Res 23(2):396-08 CrossRef
    55. Yan W, Wu G, Liu H, Hou J, Ji A (2009) Observation on exocarp growth of Korean pear during young fruit period. J Shanxi Agric Univ (Nat Sci Ed) 29(1):32-6 (in Chinese)
    56. Yang W, Simpson JP, Li-Beisson Y, Beisson F, Pollard M, Ohlrogge JB (2012) A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis: substrate specificity, sn-2 preference, and evolution. Plant Physiol 160(2):638-52 CrossRef
    57. Yu D, Ranathunge K, Huang H, Pei Z, Franke R, Schreiber L, He C (2008) Wax crystal-sparse leaf1 encodes a β-ketoacyl CoA synthase involved in biosynthesis of cuticular waxes on rice leaf. Planta 228(4):675-85 CrossRef
    58. Zhang S, Wu J, Chen H, Gu C, Tao S, Wu J, Zhang S (2011) Identification of differentially expressed genes in a spontaneous mutant of ‘Nanguoli-pear ( / Pyrus ussuriensis Maxim) with large fruit. J Hort Sci Biotech 86(6):595-02
  • 作者单位:Yue-zhi Wang (1)
    Shujun Zhang (1) (2)
    Mei-song Dai (1)
    Ze-bin Shi (1)

    1. Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang Province, China
    2. Jining Forestry Bureau, Jining, 272019, Shandong Province, China
  • ISSN:1573-5028
文摘
Exocarp color of sand pear is an important trait for the fruit production and has caused our concern for a long time. Our previous study explored the different expression genes between the two genotypes contrasting for exocarp color, which indicated the different suberin, cutin, wax and lignin biosynthesis between the russet- and green-exocarp. In this study, we carried out microscopic observation and Fourier transform infrared spectroscopy analysis to detect the differences of tissue structure and biochemical composition between the russet- and green-exocarp of sand pear. The green exocarp was covered with epidermis and cuticle which was replaced by a cork layer on the surface of russet exocarp, and the chemicals of the russet exocarp were characterized by lignin, cellulose and hemicellulose. We explored differential gene expression between the russet exocarp of ‘Niitaka-and its green exocarp mutant cv. ‘Suisho-using Illumina RNA-sequencing. A total of 559 unigenes showed different expression between the two types of exocarp, and 123 of them were common to the previous study. The quantitative real time-PCR analysis supports the RNA-seq-derived gene with?different expression between the two types of exocarp and revealed the preferential expression of these genes in exocarp than in mesocarp and fruit core. Gene ontology enrichment analysis revealed divorced expression of lipid metabolic process genes, transport genes, stress responsive genes and other biological process genes in the two types of exocarp. Expression changes in lignin metabolism-related genes were?consistent with the different pigmentation of russet and green exocarp. Increased transcripts of putative genes involved the suberin, cutin and wax biosynthesis in ‘Suisho-exocarp could facilitate deposition of the chemicals and take a role in the mutant trait responsible?for the green exocarp. In addition, the divorced expression of ATP-binding cassette transporters involved in the trans-membrane transport of lignin, cutin, and suberin precursors suggests that the transport process could also affect the composition of exocarp and take a role in the regulation of exocarp pigmentation. Results from this study provide a base for the analysis of the molecular mechanism underlying sand pear russet/green exocarp mutation, and presents a comprehensive list of candidate genes that could be used to further investigate the trait mutation at the molecular level.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700