Multi-objective optimization of the vehicle ride comfort based on Kriging approximate model and NSGA-II
详细信息    查看全文
  • 作者:Shuming Chen (1)
    Tianze Shi (1)
    Dengfeng Wang (1)
    Jing Chen (1)

    1. State Key Laboratory of Automotive Simulation and Control
    ; Jilin University ; Changchun ; 130022 ; China
  • 关键词:Car ; Rigid ; elastic coupling ; Ride performance ; Suspension parameters ; Multi ; objective optimization ; Kriging method
  • 刊名:Journal of Mechanical Science and Technology
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:29
  • 期:3
  • 页码:1007-1018
  • 全文大小:956 KB
  • 参考文献:1. Watanabe, K. (2001) Development of a new-type suspension spring for rally cars. J. of Materials Processing Tech. 111: pp. 132-134 CrossRef
    2. Mansfield, N. J., Griffin, M. J. (2000) Difference thresholds for automobile seat vibration. Appl. Ergon. 31: pp. 255-261 CrossRef
    3. Tong, W., Guo, K. H. (2012) Simulation testing research on ride comfort of vehicle with global-coupling torsion-elimination suspension. Physics Procedia. 33: pp. 1741-1748 CrossRef
    4. Sun, X. (2012) Research of simulation on the effect of suspension damping on vehicle ride. Energy Procedia. 17: pp. 145-151 CrossRef
    5. Bein, T. (2012) 10 鈥?Advanced materials and technologies for reducing noise, vibration and harshness (NVH) in automobiles.
    6. Chen, S. M., Wang, D. F., Liu, B. (2013) Automotive exterior noise optimization using grey relational analysis coupled with principal component analysis. Fluct. Noise Lett. 3: pp. 12
    7. Chen, S. M. (2013) Optimization of car sound package with statistical energy analysis model using grey relational analysis and taguchi method. Fluct. Noise Lett. 1: pp. 12
    8. Saintillan, D., Shelley, M. J. (2013) Active suspensions and their nonlinear models. Comptes Rendus Physique. 14: pp. 497-517 CrossRef
    9. Unger, A. (2013) Application of LQ-based semi-active suspension control in a vehicle. Control Engineering Practice 21: pp. 1841-1850 CrossRef
    10. Sun, W. (2014) Multi-objective control for uncertain nonlinear active suspension systems. Mechatronics. 24: pp. 318-327 CrossRef
    11. Zaremba, A., Hampo, R., Hrovat, D. (1997) Optimal active suspension design using constrained optimization. J. of Sound and Vibration 207: pp. 351-364 CrossRef
    12. Qazi, A. J. (2013) A parametric study on performance of semi-active suspension system with variable damping coefficient limit. AASRI Procedia. 4: pp. 154-159 CrossRef
    13. Li, P. S., Lam, J., Cheung, K. C. (2014) Multi-objective control for active vehicle suspension with wheelbase preview. J. of Sound and Vibration 333: pp. 5269-5282 CrossRef
    14. Khiavi, A. M., Mirzaei, M., Hajimohammadi, S. (2014) A new optimal control law for the semi-active suspension system considering the nonlinear magneto-rheological damper model. J. Vib. Control 20: pp. 2221-2233 CrossRef
    15. Cronj茅, P. H., Els, P. S. (2010) Improving off-road vehicle handling using an active anti-roll bar. J. of Terramechanics 47: pp. 179-189 CrossRef
    16. Uys, P. E., Els, P. S., Thoresson, M. (2007) Suspension settings for optimal ride comfort of off-road vehicles travelling on roads with different roughness and speeds. J. of Terramechanics 44: pp. 163-175 CrossRef
    17. T眉rkay, S., Ak莽ay, H. (2008) Aspects of achievable performance for quarter-car active suspensions. J. of Sound and Vibration 311: pp. 440-460 CrossRef
    18. Nagaya, G., Wakao, Y., Abe, A. (2003) Development of an inwheel drive with advanced dynamic-damper mechanism. JSAE Review 24: pp. 477-481 CrossRef
    19. Hrovat, D. (1988) Influence of unsprung weight on vehicle ride quality. J. of Sound and Vibration 124: pp. 497-516 CrossRef
    20. Hrovat, D. (1991) Optimal suspension performance for 2-D vehicle models. J. of Sound and Vibration 146: pp. 93-110 CrossRef
    21. Nariman-Zadeh, N. (2010) Pareto optimization of a five-degree of freedom vehicle vibration model using a multi-objective uniform-diversity genetic algorithm (MUGA). Engineering Applications of Artificial Intelligence 23: pp. 543-551 CrossRef
    22. He, H., Zhou, N., Zhang, R.M. (2014) On estimation for the Pareto distribution. Statistical Methodology 21: pp. 49-58 CrossRef
    23. Park, J. (2014) Numerical analysis of a dual-fueled CI (compression ignition) engine using Latin hypercube sampling and multi-objective Pareto optimization. Energy 70: pp. 278-287 CrossRef
    24. Hu, X.-B. (2014) Multi-objective new product development by complete Pareto front and ripple-spreading algorithm. Neurocomputing 142: pp. 4-15 CrossRef
    25. Deb, M. (2014) Multi objective optimization of performance parameters of a single cylinder diesel engine with hydrogen as a dual fuel using pareto-based genetic algorithm, International. J. of Hydrogen Energy 39: pp. 8063-8077 CrossRef
    26. Fang, J. (2014) Parametric analysis and multiobjective optimization for functionally graded foam-filled thin-wall tube under lateral impact. Computational Materials Science 90: pp. 265-275 CrossRef
    27. Gu, X. (2013) Multiobjective optimization design for vehicle occupant restraint system under frontal impact. Struct. Multidiscip. Optim. 47: pp. 465-477 CrossRef
    28. Costas, M. (2014) A multi-objective surrogate-based optimization of the crashworthiness of a hybrid impact absorber. International J. of Mechanical Sciences 88: pp. 46-54 CrossRef
    29. Richard, B., Cremona, C., Adelaide, L. (2012) A response surface method based on support vector machines trained with an adaptive experimental design. Structural Safety 39: pp. 14-21 CrossRef
    30. Zarei, H. R., Kr枚ger, M. (2008) Optimization of the foam-filled aluminum tubes for crush box application. Thin-Walled Structures 46: pp. 214-221 CrossRef
    31. Jensen, H. A., Becerra, L. G., Valdebenito, M. A. (2013) On the use of a class of interior point algorithms in stochastic structural optimization. Computers & Structures 126: pp. 69-85 CrossRef
    32. Wang, D. F. (2014) Wheel dynamic load optimization of inwheel motorelectric vehicle based on response surface method. Applied Mechanics and Materials 556鈥?62: pp. 1435-1440 CrossRef
    33. Viana, F. C., Haftka, R., Steffen, V. (2009) Multiple surrogates: how cross-validation errors can help us to obtain the best predictor. Struct. Multidiscip. Optim. 39: pp. 439-457 CrossRef
    34. Huang, Z. (2011) Optimal design of aeroengine turbine disc based on kriging surrogate models. Computers & Structures 89: pp. 27-37 CrossRef
    35. Zhang, Y. (2011) Identification of material parameters for high strength steel under impact loading. Advanced Science Letters 4: pp. 708-714 CrossRef
    36. Wang, Y., Liu, G. (2012) A forecasting method based on online self-correcting single model RBF neural network. Procedia Engineering 29: pp. 2516-2520 CrossRef
    37. Gaspar, B., Teixeira, A. P., Soares, C. G. (2014) Assessment of the efficiency of Kriging surrogate models for structural reliability analysis. Probabilistic Engineering Mechanics 37: pp. 24-34 CrossRef
    38. Bucher, C., Most, T. (2008) A comparison of approximate response functions in structural reliability analysis. Probabilistic Engineering Mechanics 23: pp. 154-163 CrossRef
    39. Alibrandi, U. (2014) A response surface method for stochastic dynamic analysis. Reliability Engineering & System Safety 126: pp. 44-53 CrossRef
    40. Vanderplaats, G. N., Moses, F. (1973) Structural optimization by methods of feasible directions. Computers & Structures 3: pp. 739-755 CrossRef
    41. Sedighizadeh, M. (2014) Hybrid approach to FACTS devices allocation using multi-objective function with NSPSO and NSGA-II algorithms in Fuzzy framework. International J. of Electrical Power & Energy Systems 62: pp. 586-598 CrossRef
    42. Deb, K. (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II, Evolutionary Computation. IEEE Transactions on 6: pp. 182-197
    43. Bharti, P. S., Maheshwari, S., Sharma, C. (2012) Multi-objective optimization of electric-discharge machining process using controlled elitist NSGA-II. J. Mech. Sci. Technol. 26: pp. 1875-1883 CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Mechanical Engineering
    Structural Mechanics
    Control Engineering
    Industrial and Production Engineering
  • 出版者:The Korean Society of Mechanical Engineers
  • ISSN:1976-3824
文摘
The RMS of weighted acceleration, wheel dynamic load and suspension dynamic deflection are determined as evaluation indices of vehicle ride comfort performance. A multi-body dynamic rigid-flexible coupling model of an in-wheel motor vehicle is built based on the multi-body system dynamics. The ride comfort results of ride comfort simulation and road test are well fitted. A kriging model is created to describe the relationship of vehicle ride comfort evaluation indices and suspension parameters. A multi-objective optimization using NSGA-II is processed using this model, and the vehicle ride comfort performance is improved by using the optimized suspension parameters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700