Fabrication of nanoscale step height structure using atomic layer deposition combined with wet etching
详细信息    查看全文
  • 作者:Chenying Wang ; Shuming Yang ; Weixuan Jing…
  • 关键词:atomic layer deposition (ALD) ; wet etching ; step height
  • 刊名:Chinese Journal of Mechanical Engineering
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:29
  • 期:1
  • 页码:91-97
  • 全文大小:1,438 KB
  • 参考文献:[1]SAAVEDRA H M, MULLEN T J, ZHANG P P, et al. Hybrid strategies in nanolithography [J]. Reports on Progress in Physics, 2010, 73(3): 036501.CrossRef
    [2]DIEGOLI S, HAMLETT C, LEIGH S J, et al. Engineering nanostructures at surfaces using nanolithography [J]. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 2007, 221(G4): 589–629.CrossRef
    [3]GENG Xuewen, HE Chunlin, XU Shichong, et al. Silver-assisted chemical etching of semiconductor materials[J]. Progress in Chemistry, 2012, 24(10): 1955–1965.
    [4]VOLKERT C A, MINOR A M. Focused ion beam microscopy and micromachining [J]. MRS Bulletin, 2007, 32(05): 389–399.CrossRef
    [5]LEE C C, ALICI G, SPINKS G, et al. Focused ion beam fabricated polystyrene-platinum thermal microactuator[J]. Advanced Materials Research of NEMS/MEMS Technology and Devices, 2011, 254, 86–89.CrossRef
    [6]KIM C S, PARK J, CHU W S, et al. Fabrication of silicon micro-mould for polymer replication using focused ion beam[J]. Microelectronic Engineering, 2009, 86(4): 556–560.CrossRef
    [7]ZIER M, SCHEIBA F, OSWALD S, et al. Lithium dendrite and solid electrolyte interphase investigation using OsO4[J]. Journal of Power Sources, 2014, 266: 198–207.CrossRef
    [8]NAZNEEN F, SCHMIDT M, MCLOUGHLIN E, et al. Impact of surface nano-textured stainless steel prepared by focused ion beam on endothelial cell growth[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(8): 5283–5290.CrossRef
    [9]KIM H B. Focused ion beam fabrication of curved structures using the concept of beam shaping and variable dwell time[J]. Microelectronic Engineering, 2011, 88(11): 3365–3371.CrossRef
    [10]FUKUDA Y, SCHROD N, SCHAFFER M, et al. Coordinate transformation based cryo-correlative methods for electron tomography and focused ion beam milling[J]. Ultramicroscopy, 2014, 143: 15–23.CrossRef
    [11]URBÁNEK M, UHLÍR V, BÁBOR P, et al. Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process[J]. Nanotechnology, 2010, 21(14): 145304.CrossRef
    [12]WANG Chenying, JIANG Zhuangde, YANG Shuming, et al. Structure analysis of nano-scale dual-step fabricated by Focused Ion Beam[C]//Nanotechnology (IEEE-NANO), 2013 13th IEEE Conference, 14060494: 829–832.
    [13]CHEN H S, YEH D M, LU Y C, et al. Strain relaxation and quantum confinement in InGaN/GaN nanoposts[J]. Nanotechnology, 2006(17): 1454–1458.CrossRef
    [14]NORIKO N B, SAYO M C, MASAFUMI T A. Nano-cell fabrication on semiconductor utilizing self-organizational behavior of point defects induced by ion beam[J]. Surface & Coatings Technology, 2009, 203: 2463–2467.CrossRef
    [15]PIETRZYK M A, STACHOWICZ M, WIERZBICKA A, et al. Growth conditions and structural properties of ZnMgO nanocolumns on Si(111)[J]. Journal of Crystal Growth, 2014(408): 102–106.CrossRef
    [16]MIIKKULAINEN V, LESKELA M, RITALA M, et al. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends[J]. Journal of Applied Physics, 2013, 113(2): 021301.CrossRef
    [17]NILSEN O, FOSS S, KJEKSHUS A, et al. Growth of nano-needles of manganese (IV) oxide by atomic layer deposition[J]. Journal of Nanoscience and Nanotehcnology, 2008, 8(2): 1003–1011.
    [18]ROSSNAGEL S M, KIM H. From PVD to CVD to ALD for Interconnects and Related Applications[C]//Proc. of the IEEE 2001 International Interconnect Technology Conference, 2001: 3–5.
    [19]KIM H. Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing[J]. Vac. Sci. Technol. B: Microelectron. Nanometer Struct, 2003, 21(6): 2231–2261.CrossRef
    [20]HE Junpeng, ZHANG Yueguang, SHEN Weidong, et al. Optical properties of Al2O3 thin film fabricated by atomic layer deposition[J]. Chinese Journal of Acta Optica Sinica, 2010(1): 277–282.
    [21]KOENDERS L, BERGMANS R, GARNAES J, et al. Comparison on nanometrology: Nano 2—Step height[J]. Metrologia, 2003, 40(1A): 04001.CrossRef
  • 作者单位:Chenying Wang (1)
    Shuming Yang (1)
    Weixuan Jing (1)
    Wei Ren (2)
    Qijing Lin (1)
    Yijun Zhang (2)
    Zhuangde Jiang (1)

    1. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049, China
    2. Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi’an Jiaotong University, Xi’an, 710049, China
  • 刊物主题:Mechanical Engineering; Theoretical and Applied Mechanics; Manufacturing, Machines, Tools; Engineering Thermodynamics, Heat and Mass Transfer; Power Electronics, Electrical Machines and Networks; Electronics and Microelectronics, Instrumentation;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2192-8258
文摘
The current techniques used for the fabrication of nanosteps are normally done by layer growth and then ion beam thinning. There are also extra films grown on the step surfaces in order to reduce the roughness. So the whole process is time consuming. In this paper, a nanoscale step height structure is fabricated by atomic layer deposition (ALD) and wet etching techniques. According to the traceable of the step height value, the fabrication process is controllable. Because ALD technology can grow a variety of materials, aluminum oxide (Al2O3) is used to fabricate the nanostep. There are three steps of Al2O3 in this structure including 8 nm, 18 nm and 44 nm. The thickness of Al2O3 film and the height of the step are measured by anellipsometer. The experimental results show that the thickness of Al2O3 film is consistent with the height of the step. The height of the step is measured by AFM. The measurement results show that the height is related to the number of cycles of ALD and the wet etching time. The bottom and the sidewall surface roughness are related to the wet etching time. The step height is calibrated by Physikalisch-Technische Bundesanstalt (PTB) and the results were 7.5±1.5 nm, 15.5±2.0 nm and 41.8±2.1 nm, respectively. This research provides a method for the fabrication of step height at nanoscale and the nanostep fabricated is potential used for standard references. Keywords atomic layer deposition (ALD) wet etching step height

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700