Effects of semi-lunar tidal cycling on soil CO2 and CH4 emissions: a case study in the Yangtze River estuary, China
详细信息    查看全文
  • 作者:Nai-Shun Bu ; Jun-Feng Qu ; Hua Zhao ; Qing-Wu Yan…
  • 关键词:Carbon emissions ; Estuarine wetlands ; Semi ; lunar tidal cycle ; Tides ; Yangtze River estuary
  • 刊名:Wetlands Ecology and Management
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:23
  • 期:4
  • 页码:727-736
  • 全文大小:808 KB
  • 参考文献:Chambers LG, Reddy KR, Osborne TZ (2011) Short-term response of carbon cycling to salinity pulses in a freshwater wetland. Soil Sci Soc Am J 75:2000-007. doi:10.-136/?sssaj2011.-026 CrossRef
    Chapin FS III, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New York
    Chen GC, Tam NFY, Ye Y (2012) Spatial and seasonal variations of atmospheric N2O and CO2 fluxes from a subtropical mangrove swamp and their relationships with soil characteristics. Soil Biol Biochem 48:175-81. doi:10.-016/?j.?soilbio.-012.-1.-29 CrossRef
    Cheng XL, Luo YQ, Chen JQ, Lin GH, Chen JK, Li B (2006) Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine Island. Soil Biol Biochem 38:3380-386. doi:10.-016/?j.?soilbio.-006.-5.-16 CrossRef
    Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem Cycles. doi:10.-029/-002gb001917
    de Mars H, Wassen MJ (1999) Redox potentials in relation to water levels in different mire types in the Netherlands and Poland. Plant Ecol 140:41-1. doi:10.-023/?a:-009733113927 CrossRef
    Dowrick DJ, Freeman C, Lock MA, Reynolds B (2006) Sulphate reduction and the suppression of peatland methane emissions following summer drought. Geoderma 132:384-90. doi:10.-016/?j.?geoderma.-005.-6.-03 CrossRef
    Freeman C, Hudson J, Lock MA, Reynolds B, Swanson C (1994) A possible role of sulphate in the suppression of wetland methane fluxes following drought. Soil Biol Biochem 26(10):1439-442. doi:10.-016/-038-0717(94)90229-1 CrossRef
    Glatzel S, Basiliko N, Moore T (2004) Carbon dioxide and methane production potentials of peats from natural, harvested, and restored sites, eastern Quebec, Canada. Wetlands 24:261-67CrossRef
    Hawkins JE, Freeman C (1994) Rising sea levels—potential effects upon terrestrial greenhouse gas production. Soil Biol Biochem 26:325-29. doi:10.-016/-038-0717(94)90281-X CrossRef
    Hines ME, Banta GT, Giblin AE, Hobbie JE, Tugel JB (1994) Acetate concentrations and oxidation in salt-marsh sediments. Limnol Oceanogr 39:140-48. doi:10.-319/?lo.-994.-9.-.-140 CrossRef
    Hojberg O, Revsbech NP, Tiedje JM (1994) Denitrification in soil aggregates analyzed with microsensors for nitrous oxide and oxygen. Soil Sci Soc Am J 58:1691-698. doi:10.-136/?sssaj1994.-361599500580006-016x CrossRef
    Howes BL, Dacey JWH, King GM (1984) Carbon flow through oxygen and sulfate reduction pathways in salt marsh sediments. Limnol Oceanogr 29:1037-051. doi:10.-319/?lo.-984.-9.-.-037 CrossRef
    IPCC (2014) Climate change 2014: synthesis report. Cambridge University Press, Cambridge
    Jungkunst HF, Flessa H, Scherber C, Fiedler S (2008) Groundwater level controls CO2, N2O and CH4 fluxes of three different hydromorphic soil types of a temperate forest ecosystem. Soil Biol Biochem 40:2047-054. doi:10.-016/?j.?soilbio.-008.-4.-15 CrossRef
    King GM (1988) Patterns of sulfate reduction and the sulfur cycle in a South Carolina salt marsh. Limnol Oceanogr 33:376-90CrossRef
    Koh HS, Ochs CA, Yu KW (2009) Hydrologic gradient and vegetation controls on CH4 and CO2 fluxes in a spring-fed forested wetland. Hydrobiologia 630:271-86. doi:10.-007/?s10750-009-9821-x CrossRef
    Kostka JE, Roychoudhury A, Van Cappellen P (2002) Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sediments. Biogeochemistry 60:49-6. doi:10.-023/?a:-016525216426 CrossRef
    Kvale EP (2006) The origin of neap-spring tidal cycles. Mar Geol 235:5-8. doi:10.-016/?j.?margeo.-006.-0.-01 CrossRef
    Li B, Liao CH, Zhang XD, Chen HL, Wang Q, Chen ZY, Gan XJ, Wu JH, Zhao B, Ma ZJ, Cheng XL, Jiang LF, Chen JK (2009) Spartina alterniflora invasions in the Yangtze River estuary, China: an overview of current status and ecosystem effects. Ecol Eng 35:511-20. doi:10.-016/?j.?ecoleng.-008.-5.-13 CrossRef
    Liao CZ, Luo YQ, Jiang LF, Zhou XH, Wu XW, Fang CM, Chen JK, Li B (2007) Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze estuary, China. Ecosystems 10:1351-361. doi:10.-007/?s10021-007-9103-2 CrossRef
    Livesley SJ, Andrusiak SM (2012) Temperate mangrove and salt marsh sediments are a small methane and nitrous oxide source but important carbon store. Estuar Coast Shelf Sci 97:19-7. doi:10.-016/?j.?ecss.-011.-1.-02 CrossRef
    Lu R (1999) Chemical analysis of agricultural soils. China Agricultural Science and Technology Press, Beijing
    Lyimo TJ, Pol A, den Camp H (2002) Sulfate reduction and methanogenesis in sediments of Mtoni mangrove forest, Tanzania. Ambio 31:614-16. doi:10.-579/-044-7447-31.-.-14 CrossRef PubMed
    Martin-Olmedo P, Rees RM (1999) Short-term N availability in response to dissolved-organic-carbon from poultry manure, alone or in combination with cellulos
  • 作者单位:Nai-Shun Bu (1) (2)
    Jun-Feng Qu (1)
    Hua Zhao (1)
    Qing-Wu Yan (1)
    Bin Zhao (2)
    Jing-Lan Fan (3)
    Chang-Ming Fang (2) (4)
    Gang Li (1)

    1. School of Environmental Science and Spatial Informatics, Low-carbon Energy Research Institute, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221008, China
    2. Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, The Institute of Biodiversity Science, Fudan University, 220 Handan Road, Shanghai, 200433, China
    3. Xuzhou Institute of Water Resource, Xuzhou, 221018, China
    4. School of Life Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Hydrobiology
    Evolutionary Biology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1572-9834
文摘
Coastal wetlands, commonly inundated by periodic tides, have been recognized as important sources of greenhouse gases. However, little is known of tidal effects on in situ soil CO2 and CH4 emissions in a semi-lunar tidal cycle consisting of neap and spring tide periods (NTP and STP). A field study was conducted in the Yangtze River estuary to investigate temporal variations of soil CO2 and CH4 emissions along with the transition from NTP to STP in a semi-lunar tidal cycle. Soil moisture, salinity and sulfate were significantly greater in STP than in NTP, whereas soil redox potential had an opposite pattern because of frequent tidal inundation. Soil CO2 and CH4 effluxes decreased significantly in STP, being 29-4 and 28-5 %, respectively, compared with those in NTP. The decrease in soil CO2 effluxes was likely attributable to two causes, an anaerobic environment inhibiting CO2 production, and tidal inundation impeding CO2 diffusion from the soil into the atmosphere. The inhibition of methanogenesis by increased soil salinity and sulfate was likely the primary reason of the decrease in CH4 effluxes during STP. Our results suggest that the effects of semi-lunar tidal cycling significantly reduce soil carbon emissions, which may be one of the potential mechanisms underlying strong carbon accumulation in wetlands of the Yangtze River estuary. Keywords Carbon emissions Estuarine wetlands Semi-lunar tidal cycle Tides Yangtze River estuary

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700