Investigations into the perplexing interrelationship of the Genus Takifugu Abe, 1949 (Tetraodontiformes, Tetraodontidae)
详细信息    查看全文
  • 作者:YuBo Zhang (1) (2)
    ShunPing He (1)
  • 关键词:phylogeny ; cytochrome b gene ; 12S rRNA gene ; Takifugu Abe
  • 刊名:Chinese Science Bulletin
  • 出版年:2008
  • 出版时间:January 2008
  • 年:2008
  • 卷:53
  • 期:2
  • 页码:233-244
  • 全文大小:1674KB
  • 参考文献:1. Su J, Li C. Fauna Sinica, Class Teleostei, Tetraodontiformes. Beijing: Science Press, 2002
    2. Santini F, Tyler J C. A phylogeny of the families of fossil and extant tetraodontiform fishes (Acanthomorpha, Tetraodontiformes), upper cretaceous to recent. Zool J Linnean Soc, 2003, 139(4): 565鈥?17 CrossRef
    3. Masuda H, Amaoka K, Araga C, et al. The Fishes of the Japanese Archipelago, vol. Text and Plates. Tokyo: Tokai Univ Press, 1984
    4. Song L, Liu B, Xiang J, et al. Molecular phylogeny and species identification of pufferfish of the genus / Takifugu (Tetraodontiformes, Tetraodontidae). Mar Biotechnol (NY), 2001, 3(4): 398鈥?06 CrossRef
    5. Cheng Q, Wang C, Tian M, et al. Studies on the Chinese Tetraodonoid fishes of the genus / Fugu. Acta Zool Sin (in Chinese), 1975, 21(4): 359鈥?78
    6. Miyaki K, Tebeta O, Kayano H. Karyotypes in six species of pufferfishes genus Takifugu (Tetraodontidae, Tetraodontiformes). Fish Sci, 1995, 61: 594鈥?98
    7. Wang K, Zhang P, Yin Q. Studies on the interspecific differences of myogen and cluster of the genus Fugu. Ocean Limnol Sin (in Chinese), 1984, 15(5): 493鈥?00
    8. Fraser-Brunner A. Notes on the plectognath fishes. VIII. The classification of the suborder Tetraodontoidea, with a synopsis of the genera. Ann Mag Nat Hist, 1943, 10(61): 1鈥?8
    9. Abe T. Taxonomic studies on the puffers (Tetraodontidae, Teleostei) from Japan and adjacent regions, V: Synopsis of the puffers from and adjacent regions. Bull Biogeogr Soc Japan, 1949, 14(1, 13): 1鈥?5, 89鈥?40, 141鈥?42
    10. Abe T. Taxonomic studies on the puffers (Tetraodontidae, Teleostei) from Japan andadjacent regions, VII: Concluding remarks, with the introduction of two new genera, / Fugu and Boesemanichthys. Jpn J Ichthyol, 1952, 2(1, 2, 3): 35鈥?4; figs. 31鈥?3, 93鈥?7, 117鈥?27
    11. Whitley G P. Studies in ichthyology, vol 16. Records of the Australian Museum, 1953
    12. Chen C, Shi T, Sun S G, et al. Identification a phylogenetic relationships among four species of puffer fish in / Fugu as determined by RAPD markers. Marine Fish Res (in Chinese), 2001, 22(3): 32鈥?6
    13. Song L, Li H, Cui Z, et al. Population genetic structure and genetic differentiation of the pufferfish / Takifugu rubripes and / Takifugu pseudommus revealed by RAPD Analysis. High Technol Lett, 2003, 9(1): 22鈥?5
    14. Song L S, Liu B, Wang Z, et al. Phylogenetic relationships among pufferfish of genus / Takifugu by RAPD analysis. Chin J Oceanol Limnol, 2001, 19(2): 128鈥?34 CrossRef
    15. Aparicio S, Chapman J, Stupka E, et al. Whole-genome shotgun assembly and analysis of the genome of / Fugu rubripes. Science, 2002, 297(5585): 1301鈥?310 CrossRef
    16. Elmerot C, Arnason U, Gojobori T, et al. The mitochondrial genome of the pufferfish, / Fugu rubripes, and ordinal teleostean relationships. Gene, 2002, 295(2): 163鈥?72 CrossRef
    17. Brenner S, Elgar G, Sandford R, et al. Characterization of the pufferfish ( / Fugu) genome as a compact model vertebrate genome. Nature, 1993, 366(6452): 265鈥?68 CrossRef
    18. Chen W J, Orti G, Meyer A. Novel evolutionary relationship among four fish model systems. Trends Genet, 2004, 20(9): 424鈥?31 CrossRef
    19. Holcroft N I. A molecular test of alternative hypotheses of tetraodontiform (Acanthomorpha: Tetraodontiformes) sister group relationships using data from the RAG1 gene. Mol Phylogenet Evol, 2004, 32(3): 749鈥?60 CrossRef
    20. Holcroft N I. A molecular analysis of the interrelationships of tetraodontiform fishes (Acanthomorpha: Tetraodontiformes). Mol Phylogenet Evol, 2005, 34(3): 525鈥?44 CrossRef
    21. Esposti M D, De Vries S, Crimi M, et al. Mitochondrial cytochrome / b: Evolution and structure of the protein. Biochim Biophys Acta, 1993, 1143(3): 243鈥?71 CrossRef
    22. Miya M, Nishida M. Use of mitogenomic information in teleostean molecular phylogenetics: A tree-based exploration under the maximum-parsimony optimality criterion. Mol Phylogenet Evol, 2000, 17(3): 437鈥?55 CrossRef
    23. Zardoya R, Meyer A. Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates. Mol Biol Evol, 1996, 13(7): 933鈥?42
    24. Peng Z, He S, Zhang Y. Phylogenetic relationships of glyptosternoid fishes (Siluriformes: Sisoridae) inferred from mitochondrial cytochrome / b gene sequences. Mol Phylogenet Evol, 2004, 31(3): 979鈥?87 CrossRef
    25. Cui J, Shen X, Yang G, et al. Genetic diversities of / T. rubripes and / T. pseudommus determined by microsatellites DNA variations. High Technol Commun, 2005, 15(12): 90鈥?6
    26. Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual-2nd. New York: Cold Spring Harbor Laboratory Press, 1989
    27. Xiao W, Zhang Y, Liu H. Molecular systematics of Xenocyprinae (teleostei: cyprinidae): Taxonomy, biogeography, and coevolution of a special group restricted in East Asia. Mol Phylogenet Evol, 2001, 18(2): 163鈥?73 CrossRef
    28. Liu H Z. Phylogenetic relationships of the cypriniformes tested by mtDNA 12S rRNA sequence variations. Acta Genet Sin, 2004, 31(2): 137鈥?42
    29. Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25(24): 4876鈥?882 CrossRef
    30. Galtier N, Gouy M, Gautier C. SEAVIEW and PHYLO_WIN: Two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci, 1996, 12(6): 543鈥?48
    31. Wiens J J. Combining data sets with different phylogenetic histories. Syst Biol, 1998, 47(4): 568鈥?81 CrossRef
    32. Farris J S, Kallersjo M, Kluge A G, et al. Testing significance of incongruence. Cladistics, 1995, 10(3): 315鈥?19 CrossRef
    33. Swofford D L. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods), 4th ed. Sunderland, Massachusetts: Sinauer Associates, 2002
    34. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol, 1993, 10(3): 512鈥?26
    35. Xia X, Xie Z. DAMBE. Software package for data analysis in molecular biology and evolution. J Hered, 2001, 92(4): 371鈥?73 CrossRef
    36. Guo X, He S, Zhang Y. Phylogeny and biogeography of Chinese sisorid catfishes re-examined using mitochondrial cytochrome / b and 16S rRNA gene sequences. Mol Phylogenet Evol, 2005, 35(2): 344鈥?62 CrossRef
    37. Irwin D M, Kocher T D, Wilson A C. Evolution of the cytochrome / b gene of mammals. J Mol Evol, 1991, 32(2): 128鈥?44 CrossRef
    38. Farris J S. Methods for computing Wagner trees. Syst Zool, 1970, 19(1): 83鈥?2 CrossRef
    39. Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol, 1981, 17(6): 368鈥?76 CrossRef
    40. Mau B. Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Madison: University of Wisconsin-Madison, 1996
    41. Huelsenbeck J P, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 2001, 17(8): 754鈥?55 CrossRef
    42. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 1985, 39(4): 783鈥?91 CrossRef
    43. Posada D, Crandall K A. MODELTEST: Testing the model of DNA substitution. Bioinformatics, 1998, 14(9): 817鈥?18 CrossRef
    44. Lanave C, Preparata G, Saccone C, et al. A new method for calculating evolutionary substitution rates. J Mol Evol, 1984, 20(1): 86鈥?3 CrossRef
    45. Kumar S, Tamura K, Nei M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform, 2004, 5(2): 150鈥?63 CrossRef
    46. Templeton A R. Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution, 1983, 37(2): 221鈥?44 CrossRef
    47. Shimodaira H, Hasegawa M. Multiple comparisons of loglikelihoods with applications to phylogenetic inference. Mol Biol Evol, 1999, 16(8): 1114鈥?116
    48. Cantatore P, Roberti M, Pesole G, et al. Evolutionary analysis of cytochrome / b sequences in some Perciformes: Evidence for a slower rate of evolution than in mammals. J Mol Evol, 1994, 39(6): 589鈥?97 CrossRef
    49. Lydeard C, Roe K J. The Phylogenetic Utility of the Mitochondrial Cytochrome / b Gene for Inferring Relationships Among Actinopterygian Fishes. San Diego: Academic Press, 1997
    50. Buckley T R, Simon C, Shimodaira H, et al. Evaluating hypotheses on the origin and evolution of the New Zealand alpine cicadas (Maoricicada) using multiple-comparison tests of tree topology. Mol Biol Evol, 2001, 18(2): 223鈥?34
    51. Masuda Y, Shinohara N, Takahashi Y, et al. Occurrence of natural hybrid between pufferfishes, / Takifugu xanthopterus and / T. vermicularis, in Ariake Bay, Kyushu, Japan. Nippon Suisan Gakkaishi, 1991, 57(7): 1247鈥?255
    52. Johnson J B, Jordan S. Phylogenetic divergence in leatherside chub ( / Gila copei) inferred from mitochondrial cytochrome / b sequences. Mol Ecol, 2000, 9(8): 1029鈥?035 CrossRef
    53. Near T J, Porterfield J C, Page L M. Evolution of Cyt / b and the molecular systematics of Ammocrypta (Percidae: Etheostomatinae). Copeia, 2000, 3: 701鈥?11 CrossRef
    54. Kadereit J W. Molecules and morphology, phylogenetics and genetics. Bot Acta, 1994, 107: 369鈥?73
  • 作者单位:YuBo Zhang (1) (2)
    ShunPing He (1)

    1. Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
    2. Graduate University of Chinese Academy of Sciences, Beijing, 100039, China
  • ISSN:1861-9541
文摘
The phylogenetic relationships within the genus Takifugu Abe, 1949 (Tetraodontiformes, Tetraodontidae) remain unresolved. Because of the use of Takifugu as model organisms, the resolution of these relationships is crucial for the interpretation of evolutionary trends in biology. Pufferfishes of this genus are comprised of a comparatively small number of species and are mainly distributed along the coastal region of the western part of the Sea of Japan and the coastline of China. Mitochondrial gene sequences were employed to test the phylogenetic hypotheses within the genus. Seventeen species of the genus were examined. Molecular phylogenetic trees were constructed using the maximum parsimony, neighbor-joining, maximum likelihood and Bayesian methods. Our hypothesis of internal relationships within the genus differs from previous hypotheses. Our results indicate that (1) the genus Takifugu is a monophyletic assemblage; (2) the genus is divided into 6 subgroups based on the molecular data; and (3) there is low genetic diversity among the species within this genus. In addition, speciation within Takifugu appears to be driven by hybridization and isolation by distribution. Our results also suggested that the taxonomy in the genus should be clarified based on both molecular and morphological data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700