Explored a cryptic plasmid pSXM33 from Shewanella xiamenensis BC01 and construction as the shuttle vector
详细信息    查看全文
  • 作者:Yunli Zhou ; I-Son Ng
  • 关键词:cryptic plasmid ; Shewanella xiamenensis ; characterization ; bioinformatics analysis ; shuttle vector
  • 刊名:Biotechnology and Bioprocess Engineering
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:21
  • 期:1
  • 页码:68-78
  • 全文大小:553 KB
  • 参考文献:1.Huang, J. X., B. L. Sun, and X. B. Zhang (2010) Shewanella xiamenensis sp. nov., isolated from coastal sea sediment. Int. J. Syst. Evol. Microbiol. 60: 1585–1589.CrossRef
    2.Nealson, K. H. and J. Scott (2006) Ecophysiology of the genus Shewanella. pp. 1133–1151. In: M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt (eds.). The prokaryotes: A Handbook on the Biology of Bacteria. Springer, NY, USA.CrossRef
    3.Urrutia, M. M., E. E. Roden, and J. M. Zachara (1999) Influence of aqueous and solid-phase Fe(II) complexants on microbial reduction of crystalline iron(III) oxides. Environ. Sci. Technol. 33: 4022–4028.CrossRef
    4.Pitts, K. E., P. S. Dobbin, F. Reyes-Ramirez, A. J. Thomson, D. J. Richardson, and H. E. Seward (2003) Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA: Expression in Escherichia coli confers the ability to reduce soluble Fe (III) chelates. J. Biol. Chem. 278: 27758–27765.CrossRef
    5.Fitzgerald, L. A., E. R. Petersen, B. J. Gross, C. M. Soto, B. R. Ringeisen, M. Y. El-Naggar, and J. C. Biffinger (2012) Aggrandizing power output from Shewanella oneidensis MR-1 microbial fuel cells using calcium chloride. Biosens. Bioelectron. 31: 492–498.CrossRef
    6.Yang, Y., G. Sun, J. Guo, and M. Xu (2011) Differential biofilms characteristics of Shewanella decolorationis microbial fuel cells under open and closed circuit conditions. Bioresour. Technol. 102: 7093–7098.CrossRef
    7.Tsai, M. S., H. L. You, Y. F. Tang, and J. W. Liu (2008) Shewanella soft tissue infection: Case report and literature review. Int. J. Infect. Dis. 12: 119–124.CrossRef
    8.Dey, S., D. Bhattacharya, S. Roy, S. D. Nadgir, A. Patil, and S. D. Kholkute (2015) Shewanella algae in acute gastroenteritis. Ind. J. Med. Microbiol. 33: 172–175.CrossRef
    9.Zong, Z. Y. (2011) Nosocomial peripancreatic infection associated with Shewanella xiamenensis. J. Med. Microbiol. 60: 1387–1390.CrossRef
    10.Ng, I. S., T. T. Chen, R. Lin, X. Zhang, C. Ni, and D. Sun (2014) Decolorization of textile azo dye and Congo red by an isolated strain of the dissimilatory manganese-reducing bacterium Shewanella xiamenensis BC01. Appl. Microbiol.Biotechnol. 98: 2297–2308.CrossRef
    11.Li, Y., I. S. Ng, X. Zhang, and N. Wang (2014) Draft genome sequence of the dye-decolorizing and nanowire-producing bacterium Shewanella xiamenensis BC01. Genome Announc. 2: pii: e00721–14.
    12.Sota, M., H. Yano, J. M. Hughes, G. W. Daughdrill, Z. Abdo, L. J. Forney, and E. M. Top (2010) Shifts in the host range of a promiscuous plasmid through parallel evolution of its replication initiation protein. ISME J. 4: 1568–1580.CrossRef
    13.Uchiya, K., H. Takahashi, T. Nakagawa, T. Yagi, M. Moriyama, T. Inagaki, K. Ichikawa, T. Nikai, and K. Ogawa (2015) Characterization of a Novel Plasmid, pMAH135, from Mycobacterium avium subsp. hominissuis. PLoS One. 10: e0117797.
    14.Jeon, J. M., H. Park, H. M. Seo, J. H. Kim, S. K. Bhatia, G. Sathiyanarayanan, H. S. Song, S. H. Park, K. Y. Choi, B. I. Sang, and Y. H. Yang (2015) Isobutanol production from an engineered Shewanella oneidensis MR-1. Bioproc. Biosyst. Eng. 38: 2147–2154.CrossRef
    15.Chen, T. T., Y. L. Zhou, I. S. Ng, C. S. Yang, and H. Y. Wang (2015) Formation and characterization of extracellular polymeric substance from Shewanella xiamenensis BC01 under calcium stimulation. J. Taiwan Inst. Chem. Eng. 57: 175–181.CrossRef
    16.Fredrickson, J. K., M. F. Romine, A. S. Beliaev, J. M. Auchtung, M. E. Driscoll, T. S. Gardner, K. H. Nealson, A. L. Osterman, G. Pinchuk, J. L. Reed, D. A. Rodionov, J. L. Rodrigues, D. A. Saffarini, M. H. Serres, A. M. Spormann, I. B. Zhulin, and J. M. Tiedje (2008) Towards environmental systems biology of Shewanella. Nat. Rev. Microbiol. 6: 592–603.CrossRef
    17.Yin, J., L. Sun, Y. Dong, X. Chi, W. Zhu, S. H. Qi, and H. Gao (2013) Expression of blaA underlies unexpected ampicillininduced cell lysis of Shewanella oneidensis. PLoS One. 8: e60460.CrossRef
    18.Chiang, C. J., G. L. Yeh, P. T. Chen, T. H. Lin, T. H. Lin, W. S. Hwang, and Y. P. Chao (2014) Development of a genomic engineering tool in Saccharomyces cerevisiae. J. Taiwan Inst. Chem. Eng. 45: 24–31.CrossRef
    19.Rachkevych, N., K. Sybirna, S. Boyko, Y. Boretsky, and A. Sibirny (2014) Improving the efficiency of plasmid transformation in Shewanella oneidensis MR-1 by removing ClaI restriction site. J. Microbiol. Methods. 99: 35–37.CrossRef
    20.Nováková, J., A. Izsáková, T. Grivalský, C. Ottmann, and M. Farkašovský (2014) Improved method for high-efficiency electrotransformation of Escherichia coli with the large BAC plasmids. Folia Microbiol (Praha). 59: 53–61.CrossRef
    21.Lee, C., J. Kim, S. G. Shin, and S. Hwang (2006) Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J. Biotechnol. 123: 273–280.CrossRef
    22.Kim, S. Y., C. G. Oh, Y. J. Lee, K. H. Choi, D. S. Shin, S. K. Lee, K. J. Park, H. Shin, M. S. Park, and J. H. Lee (2013) Sequence analysis of a cryptic plasmid pKW2124 from Weissella cibaria KLC140 and construction of a surface display vector. J. Microbiol. Biotechnol. 23: 545–554.CrossRef
    23.Xi, X. D., J. Fan, Y. Hou, J. H. Gu, W. Shen, Z. Li, and Z. Cui (2013) Characterization of three cryptic plasmids from Lactobacillus plantarum G63 that was isolated from Chinese pickle. Plasmid 70: 321–328.CrossRef
    24.Bennett, P. M. (2008) Plasmid encoded antibiotic resistance: Acquisition and transfer of antibiotic resistance genes in bacteria. Br. J. Pharmacol. 153: 347–357.CrossRef
    25.Moritz, E. M. and P. J. Hergenrother (2007) Toxin-antitoxin systems are ubiquitous and plasmid-encoded in vancomycin-resistant enterococci. Proc. Natl. Acad. Sci. USA. 104: 311–316.CrossRef
    26.Rosvoll, T. C., T. Pedersen, H. Sletvold, P. J. Johnsen, J. E. Sollid, G. S. Simonsen, L. B. Jensen, K. M. Nielsen, and A. Sundsfjord (2010) PCR-based plasmid typing in Enterococcus faecium strains reveals widely distributed pRE25-, pRUM-, pIP501-, and pHTbeta-related replicons associated with glycopeptide resistance and stabilizing toxin-antitoxin systems. FEMS Immunol. Med. Microbiol. 58: 254–268.CrossRef
    27.Lee, H. J., H. M. Jin, M. S. Park, W. Park, E. L. Madsen, and C.O. Jeon (2015) Recovery of plasmid pEMB1, whose toxinantitoxin system stabilizes an ampicillin resistance-conferring ß-lactamase gene in Escherichia coli, from natural environments. Appl. Environ. Microbiol. 81: 40–47.CrossRef
    28.Erauso, G., F. Lakhal, A. Bidault-Toffin, P. Le Chevalier, P. Bouloc, C. Paillard, and A. Jacq (2011) Evidence for the role of horizontal transfer in generating pVT1, a large mosaic conjugative plasmid from the clam pathogen, Vibrio tapetis. PLoS One. 6: e16759.CrossRef
    29.Lee, C. T., I. T. Chen, Y. T. Yang, T. P. Ko, Y. T. Huang, J. Y. Huang, M. F. Huang, S. Lin, C. Y. Chen, S. S. Lin, D. V. Lightner, H. C. Wang, A. H. Wang, H. C. Wang, L. I. Hor, and C. F. Lo (2015) The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin. Proc. Natl. Acad. Sci. USA. 112: 10798–10803.CrossRef
    30.Milewska, K., G. Wegrzyn, and A. Szalewska-Palasz (2015) Transformation of Shewanella baltica with ColE1-like and P1 plasmids and their maintenance during bacterial growth in cultures. Plasmid 81: 42–49.CrossRef
    31.Myers, C. R. and J. M. Myers (1997) Replication of plasmids with the p15A origin in Shewanella putrefaciens MR-1. Lett. Appl. Microbiol. 24: 221–225.CrossRef
    32.Heidelberg, J. F., I. T. Paulsen, K. E. Nelson,, E. J. Gaidos, W. C. Nelson, T. D. Read, J. A. Eisen, and R. Seshadri (2002) Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat. Biotechnol. 20: 1118–1123.CrossRef
    33.Caro-Quintero, A., J. Auchtung, J. Deng, I. Brettar, M. Höfle, J. M. Tiedje, and K. T. Konstantinidis (2012) Genome sequencing of five Shewanella baltica strains recovered from the oxic-anoxic interface of the Baltic Sea. J. Bacteriol. 194: 1263.CrossRef
    34.Aguilar-Barajas, E., E. Paluscio, C. Cervantes, and C. Rensing (2008) Expression of chromate resistance genes from Shewanella sp. strain ANA-3 in Escherichia coli. FEMS Microbiol. Lett. 285: 97–100.
    35.Werbowy, K., H. Cieoeliñski, and J. Kur (2009) Characterization of a cryptic plasmid pSFKW33 from Shewanella sp. 33 B. Plasmid 62: 44–49.CrossRef
  • 作者单位:Yunli Zhou (1)
    I-Son Ng (2) (3)

    1. Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361-005, China
    2. Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
    3. Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, 70101, Taiwan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
  • 出版者:The Korean Society for Biotechnology and Bioengineering
  • ISSN:1976-3816
文摘
Plasmids are essential tools for gene transfer and manipulation in many kinds of microorganisms, but they remain mysterious in the Shewanella species. Herein, a novel cryptic plasmid pSXM33 was isolated from marine bacterium Shewanella xiamenensis BC01 (SXM) and followed by sequencing and characterization through bioinformatics approaches. At first, the plasmid DNA was digested to relatively short fragments, sub-cloned into vector pMD19T-Simple and pBluescript SK(II), then transformed into Escherichia coli (E. coli) DH5α for sequencing. A full-length pSXM33 nucleotide sequence revealed 8,068 bp with GC content of 44%, containing 12 putative open reading frames (ORFs) and several unique restriction sites. Based on the annotation of sequences, ORF1 and ORF4 showed the highest similarity to the integrase, while ORF3, ORF7 and ORF8 encoded the replication protein RepB, plasmid stabilization protein and CopG family transcriptional regulator, respectively. The promoter prediction and tandem repeats analyses suggested 15 promoters and multiple tandem repeats. Moreover, pETSXM1 and pETSXM2 were successfully constructed as shuttle vectors for E. coli and Shewanella species, based on the repB from pSXM33 and a kanamycin resistance gene from vector pET28a(+) as a selective marker. These results provide a useful genetic tool for new insight into molecular level study of the Shewanella species.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700