China summer precipitation simulations using an optimal ensemble of cumulus schemes
详细信息    查看全文
  • 作者:Shuyan Liu (1) (3)
    Wei Gao (2) (3)
    Min Xu (1)
    Xueyuan Wang (4)
    Xin-Zhong Liang (1)
  • 关键词:Regional Climate Model ; cumulus schemes ; optimal ensemble
  • 刊名:Frontiers of Earth Science
  • 出版年:2009
  • 出版时间:June 2009
  • 年:2009
  • 卷:3
  • 期:2
  • 页码:248-257
  • 全文大小:876KB
  • 参考文献:1. Anthes R A (1977). A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon Wea Rev, 105: 270-86 CrossRef
    2. Cressman G (1959). An operational objective analysis system. Mon Wea Rev, 87: 367-74 CrossRef
    3. Davies H C, Turner R E (1977). Updating prediction models by dynamical relaxation: An examination of the technique. Quart J Roy Met Soc, 103: 225-45 CrossRef
    4. Dickinson R E, Henderson-Sellers A, Kennedy P J (1993). Biosphere-Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR community climate model. NCAR Tech Note NCAR/TN-387 + STR, National Center for Atmospheric Research, Boulder, CO, 72
    5. Ding Y H (1993). Research on the 1991 Persistent, Severe Flood over Yangtze-Huai River Valley (in Chinese). Beijing: Chinese Meteorological Press, 255
    6. Ding Y H (1994). Monsoons Over China. Kluwer Academic, 419
    7. Ding Y H, Liu Y (2001). Onset and the evolution of the summer monsoon over the South China Sea during SCSMEX Field Experiment I 1998. J Meteor Soc Japan, 79: 255-76 CrossRef
    8. Dudhia J, Gill D, Guo Y R, Manning K, Wang W, Chriszar J (2000). PSU/NCAR Mesoscale Modeling System Tutorial Class Notes and User’s Guide: MM5 Modeling System Version 3 (http://www.mmm.ucar.edu/mm5/doc.html)
    9. Elguindi N, Bi X, Giorgi F, Nagarajan B, Pal J, Solmon F, Rauscher S, Zakey A (2007). RegCM Version 3.1 User’s Guide (http://users.ictp.it/~pubregcm/RegCM3/)
    10. Emanuel K A (1991). A scheme for representing cumulus convection in large-scale models. J Atmos Sci, 48: 2313-335 CrossRef
    11. Emanuel K A, Zivkovic-Rothman M (1999). Development and evaluation of a convection scheme for use in climate models. J Atmos Sci, 56: 1766-782 CrossRef
    12. Fritsch J M, Chappell C F (1980). Numerical prediction of convectively driven mesoscale pressure systems. Part I: convective parameterization. J Atmos Sci, 37: 1722-733 CrossRef
    13. Fu C, Wei H, Chen M, Su B, Zhao M, Zheng W (1998). Simulation of the evolution of summer monsoon rainbelts over eastern China from regional climate model. Chinese J Atmos Sci, 4: 522-34
    14. Gao X, Luo Y, Lin W, Zhao Z, Giorgi F (2003). Simulation of effects of land use change on climate in China by a regional climate model. Adv Atmos Sci, 4: 583-92
    15. Giorgi F, Bates G T, Nieman S J (1993)a. The multi-year surface climatology of a regional atmospheric model over the western United States. J Climate, 6: 75-5 CrossRef
    16. Giorgi F, Francisco R, Pal J S (2003). Effects of a subgrid-scale topography and land use scheme on the simulation of surface climate and hydrology. Part I: Effects of temperature and water vapor disaggregation. Journal of Hydrometeorology, 4: 317-33 CrossRef
    17. Giorgi F, Marinucci M R, Bates G T (1993)b. Development of a second generation regional climate model (RegCM2) I: Boundary layer and radiative transfer processes. Mon Wea Rev, 121: 2794-813 CrossRef
    18. Giorgi F, Marinucci M R, Bates G T (1993)c. Development of a second-generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon Wea Rev, 121: 2814-832
    19. Giorgi F, Shields C (1999). Tests of precipitation parameterizations available in latest version of NCAR regional climate model (RegCM) over continental United States. J Geophys Res, 104: 6353-375 CrossRef
    20. Grell G (1993). Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Wea Rev, 121: 764-87 CrossRef
    21. Grell G A, Dudhia J, Stauffer D R (1994). A Description of the Fifth-Generation Penn-State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398 + STR, National Center for Atmospheric Research, Boulder, CO, 122
    22. Holtslag A A M, Boville B A (1993). Local versus nonlocal boundary-layer diffusion in a global climate model. J Climate, 6: 1825-842 CrossRef
    23. Kanamitsu M, Ebisuzaki W, Woolen J, Yang S K, Hnilo J J, Firoino M, Potter G L (2002). The NCEP-DOE AMIP-II reanalysis (R-2). Bull Amer Meteor Soc, 83: 1631-643 CrossRef
    24. Kiehl J T, Hack J J, Bonan G B, Boville B A, Breigleb B P, Williamson D, Rasch P (1996). Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Note NCAR/TN-420 + STR, National Center for Atmospheric Research, Boulder, CO, 158
    25. Leung L R, Ghan S J, Zhao Z C, Luo Y, Wang W C, Wei H L (1999). Intercomparison of regional climate simulations of the 1991 summer monsoon in eastern Asia. J Geophys Res, 104: 6425-454 CrossRef
    26. Lau K M, Yang S (1996). Seasonal variation, abrupt transition, and intraseasonal variability associated with the Asian summer monsoon in the GLA GCM. J Climate, 9: 965-85 CrossRef
    27. Liang X Z (1986). The design of IAP GCM and the simulation of climate and interseasonal variability. Ph.D. Dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, 250
    28. Liang X Z, Li L, Dai A, Kunkel K E (2004)a. Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys Res Lett, 31: L24208. doi: 10.1029/2004GL021054 CrossRef
    29. Liang X Z, Li L, Kunkel K E, Ting M, Wang J X L (2004)b. Regional climate model simulation of U.S. precipitation during 1982-2002. Part I: Annual cycle. J Climate, 17: 3510-528 CrossRef
    30. Liang X Z, Samel A N, Wang W C (1995). Observed and GCM simulated decadal variability of monsoon rainfall in east China. Climate Dynamics, 11: 103-14 CrossRef
    31. Liang X Z, Samel A N, Wang W C (2002). China rainfall interannual predictability: Dependence on the annual cycle and surface anomalies. J Climate, 15: 2555-561 CrossRef
    32. Liang X Z, Wang W C (1998). Associations between China monsoon rainfall and tropospheric jets. Quart. J R Meteorol Soc, 124: 2597-623 CrossRef
    33. Liang X Z, Wang W C, Samel A N (2001). Biases in AMIP model simulations of the east China monsoon system. Climate Dynamics, 17: 291-04 CrossRef
    34. Liang X Z, Xu M, Gao W, Kunkel K E, Slusser J, Dai Y, Min Q, Houser P R, Rodell M, Schaaf C B, Gao F (2005). Development of land surface albedo parameterization bases on Moderate Resolution Imaging Spectroradiometer (MODIS) data. J Geophys Res, 110:D11107 doi: 10.1029/2004JD005579. CrossRef
    35. Liang X Z, Xu M, Kunkel K E, Grell G A, Kain J (2007). Regional climate model simulation of U.S.-Mexico summer precipitation using the optimal ensemble of two cumulus parameterizations. J Climate, 20: 5201-207 CrossRef
    36. Lin J L, Weickman K M, Kiladis G N, Mapes B E, Schubert S D, Suarez M J, Bacmeister J T, Lee M I (2008). Subseasonal variability associated with Asian summer monsoon simulated by 14 IPCC AR4 coupled GCMs. J Climate, 21: 4541-567 CrossRef
    37. Liu S (2006). CWRF application in east China monsoon area. Ph.D. Dissertation, Nanjing University of Information Science & Technology, 170
    38. Liu S, Liang X Z, Gao W, Zhang H (2008). Application of Climate-Weather Research and Forecasting Model (CWRF) in China: Domain Optimization. Chinese Atmos Sci, 32: 457-68
    39. Pal J S, Small E E, Eltahir E A B (2000). Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes with RegCM. J Geophys Res, 105(D24): 29579-9594 CrossRef
    40. Pan J, Zhai G, Gao K (2002). Comparisons of three convection parameterization schemes in regional climate simulations. Chinese J Atmos Sci, 2: 206-20
    41. Samel A N, Liang X Z (2003). Understanding relationships between the 1998 Yangtze River flood and northeast Eurasian blocking. Climate Research, 23, 149-58 CrossRef
    42. Samel A N, Wang W C, Liang X Z (1999). The monsoon rainband over China and relationship with the Eurasian circulation. J Climate, 12: 115-31
    43. Sundqvist H (1988). Parameterization of condensation and associated clouds in models for weather prediction and general circulation simulation. In: Schlesinger M E, ed. Physically-Based Modeling and Simulation of Climate and Climate Change. Kluwer, 433-61
    44. Tao S, Chen L (1987). A review of recent research on the east Asia summer monsoon in China. In: Krishnamurti T N, ed. Monsoon Meteorology. New York: Oxford University Press, 60-2
    45. Wang W, Seaman N L (1997). A comparison study of convective parameterization schemes in a mesoscale model. Mon Wea Rev, 125: 252-78 CrossRef
    46. Wang W C, Gong W, Wei H (2000). A regional model simulation of 1991 severe precipitation event over the Yangtze-Huai River Valley. Part I: Precipitation and circulation statistics. J Climate, 13, 74-2 CrossRef
    47. Wang Y Q, Sen O L, Wang B (2003). A highly resolved regional climate model (IPRC-RegCM) and its simulation of the 1998 severe precipitation event over China. Part I: Model description and verification of simulation. J Climate, 16: 1721-738 CrossRef
    48. Yang S, Lau K M, Yoo S H, Kinter J L, Miyakoda K, Ho C H (2004). Upstream subtropical signals preceding the Asian summer monsoon circulation. J Climate, 17: 4213-229 CrossRef
    49. Zeng Q C, Liang X Z, Zhang M H (1988)a. Numerical simulation of monsoons and the abrupt seasonal changing of atmospheric general circulation. Chinese J Atmos Sci (special issue), 22-2
    50. Zeng X, Zhao M, Dickinson R E (1998)b. Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Climate, 11: 2628-644 CrossRef
    51. Zhang G J (2003). Roles of tropospheric and boundary layer forcing in the diurnal cycle of convection in the U.S. southern great plains. Geophys Res Lett, 30: 2281. doi: 10.1029/2003GL018554 CrossRef
    52. Zhou J L, Tits A L, Lawrence C T (1997). User’s guide for FFSQP version 3.7: A FORTRAN code for solving constrained nonlinear (minimax) optimization problems, generating iterates satisfying all inequality and linear constraint. Institute for Systems Research, University of Maryland Tech Rep SRC-TR-92-107r4, 44
    53. Zhu J, Liang X Z (2007). Regional climate model simulation of U.S. precipitation and surface air temperature during1982-2002: Inter-annual variation. J Climate, 20: 218-32 CrossRef
  • 作者单位:Shuyan Liu (1) (3)
    Wei Gao (2) (3)
    Min Xu (1)
    Xueyuan Wang (4)
    Xin-Zhong Liang (1)

    1. Division of Illinois State Water Survey, Institute of Natural Resource Sustainability, University of Illinois, Champaign, IL61820, USA
    3. Joint Laboratory for Environmental Remote Sensing and Data Assimilation, East China Normal University and Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, Shanghai, 200062, China
    2. USDA-UVB Monitoring and Research Program, Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80523, USA
    4. Department of Atmospheric Sciences, Nanjing University, Nanjing, 210093, China
  • ISSN:2095-0209
文摘
RegCM3 (REGional Climate Model) simulations of precipitation in China in 1991 and 1998 are very sensitive to the cumulus parameterization. Among the four schemes available, none has superior skills over the whole of China, but each captures certain observed signals in distinct regions. The Grell scheme with the Fritsch-Chappell closure produces the smallest biases over the North; the Grell scheme with the Arakawa-Schubert closure performs the best over the southeast of 100°E; the Anthes-Kuo scheme is superior over the northeast; and the Emanuel scheme is more realistic over the southwest of 100°E and along the Yangtze River Basin. These differences indicate a strong degree of independence and complementarity between the parameterizations. As such, an ensemble is developed from the four schemes, whose relative contributions or weights are optimized locally to yield overall minimum root-mean-square errors from observed daily precipitation. The skill gain is evaluated by applying the identical distribution of the weights in a different period. It is shown that the ensemble always produces gross biases that are smaller than the individual schemes in both 1991 and 1998. The ensemble, however, cannot eliminate the large rainfall deficits over the southwest of 100°E and along the Yangtze River Basin that are systematic across all schemes. Further improve-ments can be made by a super-ensemble based on more cumulus schemes and/or multiple models.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700