A modeling study of effective radiative forcing and climate response due to tropospheric ozone
详细信息    查看全文
  • 作者:Bing Xie ; Hua Zhang ; Zhili Wang ; Shuyun Zhao ; Qiang Fu
  • 刊名:Advances in Atmospheric Sciences
  • 出版年:2016
  • 出版时间:July 2016
  • 年:2016
  • 卷:33
  • 期:7
  • 页码:819-828
  • 全文大小:5,048 KB
  • 刊物主题:Atmospheric Sciences; Meteorology; Geophysics/Geodesy;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-9533
  • 卷排序:33
文摘
This study simulates the effective radiative forcing (ERF) of tropospheric ozone from 1850 to 2013 and its effects on global climate using an aerosol–climate coupled model, BCC AGCM2.0.1 CUACE/Aero, in combination with OMI (Ozone Monitoring Instrument) satellite ozone data. According to the OMI observations, the global annual mean tropospheric column ozone (TCO) was 33.9 DU in 2013, and the largest TCO was distributed in the belts between 30°N and 45°N and at approximately 30°S; the annual mean TCO was higher in the Northern Hemisphere than that in the Southern Hemisphere; and in boreal summer and autumn, the global mean TCO was higher than in winter and spring. The simulated ERF due to the change in tropospheric ozone concentration from 1850 to 2013 was 0.46 W m−2, thereby causing an increase in the global annual mean surface temperature by 0.36°C, and precipitation by 0.02 mm d−1 (the increase of surface temperature had a significance level above 95%). The surface temperature was increased more obviously over the high latitudes in both hemispheres, with the maximum exceeding 1.4°C in Siberia. There were opposite changes in precipitation near the equator, with an increase of 0.5 mm d−1 near the Hawaiian Islands and a decrease of about −0.6 mm d−1 near the middle of the Indian Ocean.Key wordstropospheric ozoneeffective radiative forcingclimate effectBCC AGCM2.0.1 CUACE/Aero

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700