Synthesis of 0.3Li2MnO3·0.7LiNi1/3Co1/3Mn1/3O2 cathode materials us
详细信息    查看全文
  • 作者:Chenhao Zhao ; Zhibiao Hu ; Yunlong Zhou ; Shuzhen Fang
  • 关键词:Urchin ; like ; Lithium rich layered oxides ; Template synthesis ; Cathode materials ; Calcination temperatures ; Energy storage
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:17
  • 期:2
  • 全文大小:1,618 KB
  • 参考文献:1. Armstrong AR, Dupre N, Paterson AJ, Grey CP, Bruce PG (2004) Combined neutron diffraction, NMR, and electrochemical investigation of the layered-to-spinel transformation in LiMnO2. Chem Mater 16:3106-118 CrossRef
    2. Bai Y, Li Y, Zhong YX, Chen S, Wu F, Wu C (2014) Li-rich transition metal oxide / xLi2MnO3·(1- / x)LiMO2 (M?=?Ni, Co or Mn) for lithium ion batteries. Prog Chem 26:259-69
    3. Cho TH, Shiosaki Y, Noguchi H (2006) Preparation and characterization of layered LiNi1/3Co1/3Mn1/3O2 as a cathode material by an oxalate co-precipitation route. J Power Sources 159:1322-327 CrossRef
    4. Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22:691-14 CrossRef
    5. Fu Y, Jiang H, Hu YJ, Zhang L, Li CZ (2014) Hierarchical porous Li4Mn5O12 nano/micro structure as superior cathode materials for Li-ion batteries. J Power Sources 261:306-10 CrossRef
    6. Guo SH, Yu HJ, Liu P, Liu XZ, Li D, Chen MW, Ishida M, Zhou HS (2014) Surface coating of lithium–manganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries. J Mater Chem A 2:4422-428 CrossRef
    7. He P, Yu HJ, Li D, Zhou HS (2012) Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J Mater Chem 22:3680-695 CrossRef
    8. He W, Yuan DD, Qian JF, Ai XP, Yang HX, Cao YL (2013) Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material. J Mater Chem A 1:11397-1403 CrossRef
    9. He X, Wang J, Kloepsch R, Krueger S, Jia HP, Liu HD, Bortmann B, Li J (2014) Enhanced electrochemical properties in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method. Nano Res 7:110-18 CrossRef
    10. Jiang KC, Wu XL, Yin YX, Lee JS, Kim J, Guo YG (2012) Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries. ACS Appl Mater Interfaces 4:4858-863 CrossRef
    11. Jiang Y, Yang Z, Luo W, Hu XL, Huang YH (2013) Hollow 0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 microspheres as a high-performance cathode material for lithium-ion batteries. Phys Chem Chem Phys 15:2954-960 CrossRef
    12. Johnson CS, Li NC, Lefief C, Vaughey JT, Thackeray MM (2008) Synthesis, characterization, and electrochemistry of lithium battery electrodes: / xLi2MnO3·(1- / x)LiNi0.333Co0.333Mn0.333O2 (0?≤?em class="a-plus-plus">x?.7). Chem Mater 20:6095-106 CrossRef
    13. Kim HJ, Jung HG, Scrosati B, Sun YK (2012a) Synthesis of Li[Li0.19Ni0.16Co0.08Mn0.57]O2 cathode materials with a high volumetric capacity for
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nanotechnology
    Inorganic Chemistry
    Characterization and Evaluation Materials
    Physical Chemistry
    Applied Optics, Optoelectronics and Optical Devices
  • 出版者:Springer Netherlands
  • ISSN:1572-896X
文摘
In the paper, we report synthesis of lithium rich layered oxide 0.3Li2MnO3·0.7LiNi1/3Co1/3Mn1/3O2 by using an urchin-like MnO2 as precursor. The influences of calcination temperatures on the structures and electrochemical performances of as-prepared materials are systematically studied. The results show that the obtained sample can partially retain the morphology of urchin-like precursor especially at low temperature, and a higher calcination temperature helps to improve the layered structure and particle size. As lithium ion battery cathodes, the 750?°C sample with the size of 100-00?nm reveals an optimal electrochemical performance. The initial discharge capacity of 234.6?mAh?g? with high Coulombic efficiency of 84.6?% can be reached at 0.1C within 2.0-.7?V. After 50 cycles, the capacity retention can reach 90.2?% at 0.5C. Even at high current density of 5C, the sample also shows a stable discharge capacity of 120.5?mAh?g?. Anyways, the urchin-like MnO2 directed route is suitable to prepare 0.3Li2MnO3·0.7LiNi1/3Co1/3Mn1/3O2 as lithium ion battery cathode.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700