Genome-wide identification of Thellungiella salsuginea microRNAs with putative roles in the salt stress response
详细信息    查看全文
  • 作者:Quan Zhang (1)
    Chuanzhi Zhao (2)
    Ming Li (2)
    Wei Sun (1)
    Yan Liu (1)
    Han Xia (2)
    Mingnan Sun (2)
    Aiqin Li (2)
    Changsheng Li (2)
    Shuzhen Zhao (2)
    Lei Hou (2)
    Jean-Fran?ois Picimbon (2)
    Xingjun Wang (1) (2)
    Yanxiu Zhao (1)
  • 关键词:Thellungiella salsuginea ; Salt stress ; miRNA identification ; Solexa sequencing ; Expression analysis
  • 刊名:BMC Plant Biology
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:13
  • 期:1
  • 全文大小:649 KB
  • 参考文献:1. Blanc G, Hokamp K, Wolfe KH: A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. / Genome Res 2003, 13:137-44. CrossRef
    2. Koch MA, Haubold B, Mitchell-Olds T: Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). / Mol Biol Evol 2000, 17:1483-498. CrossRef
    3. Gong Q, Li P, Ma S, Rupassara SI, Bohnert HJ: Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. / Plant J 2005, 44:826-39. CrossRef
    4. Volkov V, Wang B, Dominy PJ, Fricke W, Amtmann A: Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. / Plant Cell Environ 2003, 27:1-4. CrossRef
    5. Xiong L, Zhu JK: Molecular and genetic aspects of plant responses to osmotic stress. / Plant Cell Environ 2002, 25:131-39. CrossRef
    6. Kant S, Kant P, Raveh E, Barak S: Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na-?uptake in T. halophila. / Plant Cell Environ 2006, 29:1220-234. CrossRef
    7. Bressan RA, Zhang C, Zhang H, Hasegawa PM, Bohnert HJ, Zhu JK: Learning from the Arabidopsis experience. The next gene search paradigm. / Plant physiology 2001, 127:1354-360. CrossRef
    8. Jones-Rhoades MW, Bartel DP: Computational identification of plant microRNAs and their targets, including a stress induced miRNA. / Mol Cell 2004, 14:787-99. CrossRef
    9. Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. / Cell 2004, 116:281-97. CrossRef
    10. Subramanian S, Fu Y, Sunkar R, Barbazuk WB, Zhu JK, Yu O: Novel and nodulation-regulated microRNAs in soybean roots. / BMC Genomics 2008. doi:10.1186/1471-164--160
    11. Jones-Rhoades MW, Bartel DP, Bartel B: MicroRNAS and their regulatory roles in plants. / Annu Rev Plant Bio 2006, 57:19-3. CrossRef
    12. Kidner CA, Martienssen RA: The developmental role of microRNA in plants. / Curr Opin Plant Biol 2005, 8:38-4. CrossRef
    13. Aukerman MJ, Sakai H: Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. / Plant Cell 2003, 15:2730-741. CrossRef
    14. Chen XM: A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. / Science 2004, 303:2022-025. CrossRef
    15. Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D: Control of leaf morphogenesis by microRNAs. / Nature 2003, 425:257-63. CrossRef
    16. Sunkar R, Zhu JK: Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis . / Plant Cell 2004, 16:2001-019. CrossRef
    17. Lu W, Li J, Liu F, Gu J, Guo C, Xu L, Zhang H, Xiao K: Expression pattern of wheat miRNAs under salinity stress and prediction of salt-inducible miRNAs targets. / Front Agric China 2011, 5:413-22. CrossRef
    18. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. / Science 2006, 312:436-39. CrossRef
    19. Liu HH, Tian X, Li YJ, Wu CA, Zheng CC: Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana . / RNA 2008, 14:836-43. CrossRef
    20. Dassanayake M, Oh DH, Haas JS, / et al.: The genome of the extremophile crucifer Thellungiella parvula. / Nat Genet 2011, 43:913-18. CrossRef
    21. Wu HJ, Zhang Z, Wang JY, / et al.: / Insights into salt tolerance from the genome of Thellungiella salsuginea. USA: Proc. Natl Acad. Sci; 2012. doi:10.1073/pnas.1209954109
    22. Zhu JK: Plant salt tolerance. / Trends Plant Sci 2011, 6:66-1. CrossRef
    23. Inan G, Zhang Q, Li P, / et al.: Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. / Plant physiology 2004, 135:1-0. CrossRef
    24. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP: A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. / Genes Dev 2006, 20:3407-425. CrossRef
    25. Sunkar R, Jagadeeswaran G: In silica identification of conserved microRNAs in large number of diverse plant species. / BMC Plant Biol 2008, 8:13. doi:10.1186/1471-229--37 CrossRef
    26. Ambros V, Bartel B, Bartel DP: A uniform system for microRNA annotation. / RNA 2003, 9:277-79. CrossRef
    27. Meyer BC, Axtell MJ, Bartel B, / et al.: Criteria for annotation of plant microRNAs. / Plant Cell 2008, 20:3186-190. CrossRef
    28. Tong L, Lin L, Wu S, / et al.: MiR-10a* up-regulates coxsackievirus B3 biosynthesis by targeting the 3D-coding sequence. / Nucleic Acids Res 2013, 41:3760-771. CrossRef
    29. Huang MD, Wu WL: Overexpression of TMAC2., a novel negative regulator of abscisic acid and salinity response., has pleiotropic effects in Arabidopsis thaliana. / Plant Mol Biol 2007, 63:557-69. CrossRef
    30. Perera IY, Hung CY, Moore CD, Stevenson-Paulik J, Boss WF: Transgenic Arabidopsis plants expressing the type 1 inositol 5-phoshatase exibit increased drought tolerance and altered abscisic acid signaling. / Plant Cell 2008, 20:2876-893. CrossRef
    31. Lee JJ, Kim WT: Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis . / Mol Cells 2011, 31:201-08. CrossRef
    32. Singh K, Foley RC, O?ate-Sánchez L: Transcription factors in plant defense and stress responses. / Curr Opin Plant Biol 2002, 5:430-36. CrossRef
    33. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L: Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. / Proc Natl Acad Sci USA 2006, 103:12987-2992. CrossRef
    34. Ruiz-Ferrer V, Voinnet O: Roles of plant small RNAs in biotic stress responses. / Annu Rev Plant Biol 2006, 60:485-10. doi:10.1146/annurev.arplant.043008.092111 CrossRef
    35. Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K: NAC transcription factors in plant abiotic stress responses. / Biochim Biophys Acta 1819, 2012:97-03. doi:10.1016/j.bbagrm.2011.10.005
    36. Arenas-Huertero C, Pérez B, Rabanal F, Blanco-Melo D, De la Rosa C, Estrada-Navarrete G, Sanchez F, Covarrubias AA, Reyes JL: Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. / Plant Mol Biol 2009, 70:385-01. CrossRef
    37. Kong YM, Elling AA, Chen B, Deng XW: Differential expression of microRNAs in maize inbred and hybrid lines during salt and drought stress. / Am J Plant Sci 2010, 1:69-6. CrossRef
    38. Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L: Genome wide identification and analysis of drought-responsive microRNAs in Oryza sativa . / J Exp Bot 2010, 61:4157-168. CrossRef
    39. Li W, Cui X, Meng Z, Huang X, Xie Q, Wu Heng, Jin H, Zhang D, Liang W: Transcritional regulation of Arabidopsis miR168a and ARGONAUTE1 homeostasis in abscisic acid and abiotic stress responses. / Plant Physiol 2012, 158:1279-292. CrossRef
    40. Trindada I, Capit?o C, Dalmay T, Fevereiro MP, Santos DM: miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula . / Planta 2010, 231:705-16. CrossRef
    41. Jia X, Wang WX, Ren L, Chen QJ, Mendu V, Willcut B, Dinkins R, Tang X, Tang G: Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana . / Plant Mol Biol 2009, 71:51-9. CrossRef
    42. Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI: The Arabidopsis HKT1 gene homolog mediates inward Na-?currents in Xenopus laevis oocytes and Na-?uptake in Saccharomyces cerevisiae . / Plant Physiol 2000, 122:1249-259. CrossRef
    43. Rus A, Yokoi S, Sharkuu A, Reddy M, Lee BH, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM: AtHKT1 is a salt tolerance determinant that controls Na + entry into plant roots. / Proc Natl Acad Sci USA 2001, 98:14150-4155. CrossRef
    44. Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A: Two types of HKT transporters with different properties of Na-?and K-?transport in Oryza sativa . / Plant J 2001, 27:129-38. CrossRef
    45. Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Close TJ: Comparative transcriptional profiling of two contrasting rice genotype under salinity stress during the vegetative growth stage. / Plant Physiol 2005, 139:822-35. CrossRef
    46. Amtmann A, Sanders D: Mechanisms of Na + uptake by plant cells. / Adv Bot Res 1999, 29:75-12.
    47. Su H, Golldack D, Katsuhara M, Zhao C, Bohnert HJ: Expression and stress dependent induction of potassium channel transcripts in the common ice plant. / Plant Physiol 2001, 125:604-14. CrossRef
    48. Griffith M, Timonin M, Wong AC, Gray GR, Akhter SR, Saldanha M, Rogers MA, Weretilnyk EA, Moffatt B: Thellungiella: an Arabidopsis-related model plant adapted to cold temperatures. / Plant Cell Environ 2007, 30:529-38. CrossRef
    49. Wong CE, Li Y, Whitty BR, Diaz-Camino C, Akhter SR, Brandle JE, Golding GB, Weretilnyk EA, Moffatt BA, Griffith M: Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity showed little overlap. / Plant Mol Biol 2005, 58:561-74. CrossRef
    50. Arbona V, Argamasilla R, Gómez-Cadenas A: Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress. / J Plant Physiol 2010, 167:1342-350. CrossRef
    51. Lugan R, Niogret MF, Leport L, Guegan JP, Larher FR, Savoure A, Kopka J, Bouchereau A: Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. / Plant Journal 2010, 64:215-29. CrossRef
    52. Zhao CZ, Xia H, Frazier TP, Yao YY, Bi YP, Li AQ, Li MJ, Li CS, Zhang BH, Wang XJ: Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). / BMC Plant Biol 2010, 5:10:3. doi:10.1186/1471-229-0-
    53. Li R, Li Y, Kristiansen K, Wang J: SOAP: short oligonucleotide alignment program. / Bioinformatics 2008, 24:713-14. doi:10.1093/bioinformatics/btn025 CrossRef
    54. Moxon S, Schwach F, Maclean D, Dalmay T, Studholme DJ, Moulton V: A toolkit for analysing large-scale plant small RNA datasets. / Bioinformatics 2008, 24:2252-253. CrossRef
    55. Chen C, Ridzon DA, Broomer AJ, / et al.: Real-time quantification of microRNAs by stem-loop RT-PCR. / Nucleic Acids Res 2005,33(20):e179. CrossRef
    56. Shen J, Xie K, Xiong L: Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses. / Mol Genet Genomics 2010, 284:477-88. CrossRef
  • 作者单位:Quan Zhang (1)
    Chuanzhi Zhao (2)
    Ming Li (2)
    Wei Sun (1)
    Yan Liu (1)
    Han Xia (2)
    Mingnan Sun (2)
    Aiqin Li (2)
    Changsheng Li (2)
    Shuzhen Zhao (2)
    Lei Hou (2)
    Jean-Fran?ois Picimbon (2)
    Xingjun Wang (1) (2)
    Yanxiu Zhao (1)

    1. College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China
    2. Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China
  • ISSN:1471-2229
文摘
Background MicroRNAs are key regulators of plant growth and development with important roles in environmental adaptation. The microRNAs from the halophyte species Thellungiella salsuginea (salt cress), which exhibits extreme salt stress tolerance, remain to be investigated. The sequenced genome of T. salsuginea and the availability of high-throughput sequencing technology enabled us to discover the conserved and novel miRNAs in this plant species. It is interesting to identify the microRNAs from T. salsuginea genome wide and study their roles in salt stress response. Results In this study, two T. salsuginea small RNA libraries were constructed and sequenced using Solexa technology. We identified 109 miRNAs that had previously been reported in other plant species. A total of 137 novel miRNA candidates were identified, among which the miR* sequence of 26 miRNAs was detected. In addition, 143 and 425 target mRNAs were predicted for the previously identified and Thellungiella-specific miRNAs, respectively. A quarter of these putative targets encode transcription factors. Furthermore, numerous signaling factor encoding genes, defense-related genes, and transporter encoding genes were amongst the identified targets, some of which were shown to be important for salt tolerance. Cleavage sites of seven target genes were validated by 5-RACE, and some of the miRNAs were confirmed by qRT-PCR analysis. The expression levels of 26 known miRNAs in the roots and leaves of plants subjected to NaCl treatment were determined by Affymetrix microarray analysis. The expression of most tested miRNA families was up- or down-regulated upon NaCl treatment. Differential response patterns between the leaves and roots were observed for these miRNAs. Conclusions Our results indicated that diverse set of miRNAs of T. salsuginea were responsive to salt stress and could play an important role in the salt stress response.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700