Large scale international replication and meta-analysis study confirms association of the 15q14 locus with myopia. The CREAM consortium
详细信息    查看全文
  • 作者:Virginie J. M. Verhoeven (12)
    Pirro G. Hysi (3)
    Seang-Mei Saw (45)
    Veronique Vitart (6)
    Alireza Mirshahi (7)
    Jeremy A. Guggenheim (8)
    Mary Frances Cotch (9)
    Kenji Yamashiro (10)
    Paul N. Baird (11)
    David A. Mackey (1112)
    Robert Wojciechowski (1314)
    M. Kamran Ikram (1215)
    Alex W. Hewitt (11)
    Priya Duggal (13)
    Sarayut Janmahasatian (16)
    Chiea-Chuen Khor (17)
    Qiao Fan (4)
    Xin Zhou (4)
    Terri L. Young (18)
    E-Shyong Tai (19)
    Liang-Kee Goh (420)
    Yi-Ju Li (18)
    Tin Aung (515)
    Eranga Vithana (515)
    Yik-Ying Teo (42122)
    Wanting Tay (5)
    Xueling Sim (22)
    Igor Rudan (23)
    Caroline Hayward (6)
    Alan F. Wright (6)
    Ozren Polasek (24)
    Harry Campbell (23)
    James F. Wilson (23)
    Brian W. Fleck (25)
    Isao Nakata (10)
    Nagahisa Yoshimura (10)
    Ryo Yamada (26)
    Fumihiko Matsuda (26)
    Kyoko Ohno-Matsui (27)
    Abhishek Nag (3)
    George McMahon (28)
    Beate St. Pourcain (28)
    Yi Lu (29)
    Jugnoo S. Rahi (3031)
    Phillippa M. Cumberland (3032)
    Shomi Bhattacharya (31)
    Claire L. Simpson (14)
    Larry D. Atwood (33)
    Xiaohui Li (34)
    Leslie J. Raffel (34)
    Federico Murgia (35)
    Laura Portas (35)
    Dominiek D. G. Despriet (12)
    Leonieke M. E. van Koolwijk (236)
    Christian Wolfram (7)
    Karl J. Lackner (737)
    Anke T?njes (3839)
    Reedik M?gi (4041)
    Terho Lehtim?ki (4243)
    Mika K?h?nen (4445)
    T?nu Esko (40)
    Andres Metspalu (40)
    Taina Rantanen (46)
    Olavi P?rssinen (47)
    Barbara E. Klein (48)
    Thomas Meitinger (4950)
    Timothy D. Spector (3)
    Ben A. Oostra (51)
    Albert V. Smith (5253)
    Paulus T. V. M. de Jong (6254)
    Albert Hofman (2)
    Najaf Amin (2)
    Lennart C. Karssen (2)
    Fernando Rivadeneira (255)
    Johannes R. Vingerling (12)
    Gueny Eiríksdóttir (53)
    Vilmundur Gudnason (5253)
    Angela D?ring (63)
    Thomas Bettecken (56)
    André G. Uitterlinden (255)
    Cathy Williams (57)
    Tanja Zeller (58)
    Rapha?le Castagné (59)
    Konrad Oexle (50)
    Cornelia M. van Duijn (2)
    Sudha K. Iyengar (16)
    Paul Mitchell (60)
    Jie Jin Wang (1160)
    René H?hn (7)
    Norbert Pfeiffer (7)
    Joan E. Bailey-Wilson (14)
    Dwight Stambolian (61)
    Tien-Yin Wong (4515)
    Christopher J. Hammond (3)
    Caroline C. W. Klaver (12) c.c.w.klaver@erasmusmc.nl
  • 刊名:Human Genetics
  • 出版年:2012
  • 出版时间:September 2012
  • 年:2012
  • 卷:131
  • 期:9
  • 页码:1467-1480
  • 全文大小:493.6 KB
  • 参考文献:1. Baird PN, Schache M, Dirani M (2010) The GEnes in Myopia (GEM) study in understanding the aetiology of refractive errors. Prog Retin Eye Res 29:520–542
    2. Curtin BJ, Karlin DB (1971) Axial length measurements and fundus changes of the myopic eye. Am J Ophthalmol 71:42–53
    3. Deans MR, Volgyi B, Goodenough DA, Bloomfield SA, Paul DL (2002) Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36:703–712
    4. Dirani M, Tong L, Gazzard G, Zhang X, Chia A, Young TL, Rose KA, Mitchell P, Saw SM (2009) Outdoor activity and myopia in Singapore teenage children. Br J Ophthalmol 93:997–1000
    5. Duparc RH, Boutemmine D, Champagne MP, Tetreault N, Bernier G (2006) Pax6 is required for delta-catenin/neurojugin expression during retinal, cerebellar and cortical development in mice. Dev Biol 300:647–655
    6. Fernandez-Medarde A, Barhoum R, Riquelme R, Porteros A, Nunez A, de Luis A, de Las Rivas J, de la Villa P, Varela-Nieto I, Santos E (2009) RasGRF1 disruption causes retinal photoreception defects and associated transcriptomic alterations. J Neurochem 110:641–652
    7. Gao Y, Wang P, Li S, Xiao X, Jia X, Guo X, Zhang Q (2012) Common variants in chromosome 4q25 are associated with myopia in Chinese adults. Ophthalmic Physiol Opt 32:68–73
    8. Guldenagel M, Ammermuller J, Feigenspan A, Teubner B, Degen J, Sohl G, Willecke K, Weiler R (2001) Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J Neurosci 21:6036–6044
    9. Hayashi H, Yamashiro K, Nakanishi H, Nakata I, Kurashige Y, Tsujikawa A, Moriyama M, Ohno-Matsui K, Mochizuki M, Ozaki M, Yamada R, Matsuda F, Yoshimura N (2011) Association of 15q14 and 15q25 with high myopia in Japanese. Invest Ophthalmol Vis Sci 52:4853–4858
    10. He M, Zeng J, Liu Y, Xu J, Pokharel GP, Ellwein LB (2004) Refractive error and visual impairment in urban children in southern china. Invest Ophthalmol Vis Sci 45:793–799
    11. Hysi PG, Young TL, Mackey DA, Andrew T, Fernandez-Medarde A, Solouki AM, Hewitt AW, Macgregor S, Vingerling JR, Li YJ, Ikram MK, Fai LY, Sham PC, Manyes L, Porteros A, Lopes MC, Carbonaro F, Fahy SJ, Martin NG, van Duijn CM, Spector TD, Rahi JS, Santos E, Klaver CC, Hammond CJ (2010) A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25. Nat Genet 42:902–905
    12. Ip JM, Saw SM, Rose KA, Morgan IG, Kifley A, Wang JJ, Mitchell P (2008) Role of near work in myopia: findings in a sample of Australian school children. Invest Ophthalmol Vis Sci 49:2903–2910
    13. Jobling AI, Gentle A, Metlapally R, McGowan BJ, McBrien NA (2009) Regulation of scleral cell contraction by transforming growth factor-beta and stress: competing roles in myopic eye growth. J Biol Chem 284:2072–2079
    14. Jones C, Moses K (2004) Cell-cycle regulation and cell-type specification in the developing Drosophila compound eye. Semin Cell Dev Biol 15:75–81
    15. Kempen JH, Mitchell P, Lee KE, Tielsch JM, Broman AT, Taylor HR, Ikram MK, Congdon NG, O’Colmain BJ, Eye Diseases Prevalence Research G (2004) The prevalence of refractive errors among adults in the United States, Western Europe, and Australia. Arch Ophthalmol 122:495–505
    16. Kihara AH, Paschon V, Cardoso CM, Higa GS, Castro LM, Hamassaki DE, Britto LR (2009) Connexin36, an essential element in the rod pathway, is highly expressed in the essentially rodless retina of Gallus gallus. J Comp Neurol 512:651–663
    17. Li YJ, Goh L, Khor CC, Fan Q, Yu M, Han S, Sim X, Ong RT, Wong TY, Vithana EN, Yap E, Nakanishi H, Matsuda F, Ohno-Matsui K, Yoshimura N, Seielstad M, Tai ES, Young TL, Saw SM (2011a) Genome-wide association studies reveal genetic variants in CTNND2 for high myopia in Singapore Chinese. Ophthalmology 118:368–375
    18. Li Z, Qu J, Xu X, Zhou X, Zou H, Wang N, Li T, Hu X, Zhao Q, Chen P, Li W, Huang K, Yang J, He Z, Ji J, Wang T, Li J, Li Y, Liu J, Zeng Z, Feng G, He L, Shi Y (2011b) A genome-wide association study reveals association between common variants in an intergenic region of 4q25 and high-grade myopia in the Chinese Han population. Hum Mol Genet 20:2861–2868
    19. Lin LL, Shih YF, Hsiao CK, Chen CJ (2004) Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. Ann Acad Med Singap 33:27–33
    20. Lu B, Jiang D, Wang P, Gao Y, Sun W, Xiao X, Li S, Jia X, Guo X, Zhang Q (2011) Replication study supports CTNND2 as a susceptibility gene for high myopia. Invest Ophthalmol Vis Sci 52:8258–8261
    21. McBrien NA, Gentle A (2003) Role of the sclera in the development and pathological complications of myopia. Prog Retin Eye Res 22:307–338
    22. McBrien NA, Young TL, Pang CP, Hammond C, Baird P, Saw SM, Morgan IG, Mutti DO, Rose KA, Wallman J, Gentle A, Wildsoet CF, Gwiazda J, Schmid KL, Smith E, 3rd, Troilo D, Summers-Rada J, Norton TT, Schaeffel F, Megaw P, Beuerman RW, McFadden SA (2008) Myopia: recent advances in molecular studies; prevalence, progression and risk factors; emmetropization; therapies; optical links; peripheral refraction; sclera and ocular growth; signalling cascades; and animal models. Optom Vis Sci [Epub ahead of print]
    23. Morgan I, Rose K (2005) How genetic is school myopia? Prog Retin Eye Res 24:1–38
    24. Nakanishi H, Yamada R, Gotoh N, Hayashi H, Yamashiro K, Shimada N, Ohno-Matsui K, Mochizuki M, Saito M, Iida T, Matsuo K, Tajima K, Yoshimura N, Matsuda F (2009) A genome-wide association analysis identified a novel susceptible locus for pathological myopia at 11q24.1. PLoS Genet 5:e1000660
    25. Paffenholz R, Kuhn C, Grund C, Stehr S, Franke WW (1999) The arm-repeat protein NPRAP (neurojungin) is a constituent of the plaques of the outer limiting zone in the retina, defining a novel type of adhering junction. Exp Cell Res 250:452–464
    26. Rose KA, Morgan IG, Ip J, Kifley A, Huynh S, Smith W, Mitchell P (2008) Outdoor activity reduces the prevalence of myopia in children. Ophthalmology 115:1279–1285
    27. Saw SM (2006) How blinding is pathological myopia? Br J Ophthalmol 90:525–526
    28. Saw SM, Hong CY, Chia KS, Stone RA, Tan D (2001) Nearwork and myopia in young children. Lancet 357:390
    29. Saw SM, Gazzard G, Shih-Yen EC, Chua WH (2005) Myopia and associated pathological complications. Ophthalmic Physiol Opt 25:381–391
    30. Shi Y, Qu J, Zhang D, Zhao P, Zhang Q, Tam PO, Sun L, Zuo X, Zhou X, Xiao X, Hu J, Li Y, Cai L, Liu X, Lu F, Liao S, Chen B, He F, Gong B, Lin H, Ma S, Cheng J, Zhang J, Chen Y, Zhao F, Yang X, Yang C, Lam DS, Li X, Shi F, Wu Z, Lin Y, Yang J, Li S, Ren Y, Xue A, Fan Y, Li D, Pang CP, Zhang X, Yang Z (2011) Genetic variants at 13q12.12 are associated with high myopia in the Han Chinese population. Am J Hum Genet 88:805–813
    31. Solouki AM, Verhoeven VJ, van Duijn CM, Verkerk AJ, Ikram MK, Hysi PG, Despriet DD, van Koolwijk LM, Ho L, Ramdas WD, Czudowska M, Kuijpers RW, Amin N, Struchalin M, Aulchenko YS, van Rij G, Riemslag FC, Young TL, Mackey DA, Spector TD, Gorgels TG, Willemse-Assink JJ, Isaacs A, Kramer R, Swagemakers SM, Bergen AA, van Oosterhout AA, Oostra BA, Rivadeneira F, Uitterlinden AG, Hofman A, de Jong PT, Hammond CJ, Vingerling JR, Klaver CC (2010) A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14. Nat Genet 42:897–901
    32. Striedinger K, Petrasch-Parwez E, Zoidl G, Napirei M, Meier C, Eysel UT, Dermietzel R (2005) Loss of connexin36 increases retinal cell vulnerability to secondary cell loss. Eur J Neurosci 22:605–616
    33. Tano Y (2002) Pathologic myopia: where are we now? Am J Ophthalmol 134:645–660
    34. Vitale S, Ellwein L, Cotch MF, Ferris FL 3rd, Sperduto R (2008) Prevalence of refractive error in the United States, 1999–2004. Arch Ophthalmol 126:1111–1119
    35. Wang Q, Gao Y, Wang P, Li S, Jia X, Xiao X, Guo X, Zhang Q (2011) Replication study of significant single nucleotide polymorphisms associated with myopia from two genome-wide association studies. Mol Vis 17:3290–3299
    36. Wu HM, Seet B, Yap EP, Saw SM, Lim TH, Chia KS (2001) Does education explain ethnic differences in myopia prevalence? A population-based study of young adult males in Singapore. Optom Vis Sci 78:234–239
    37. Young TL (2009) Molecular genetics of human myopia: an update. Optom Vis Sci 86:E8–E22
    38. Young TL, Metlapally R, Shay AE (2007) Complex trait genetics of refractive error. Arch Ophthalmol 125:38–48
  • 作者单位:1. Department of Ophthalmology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands2. Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands3. Department of Twin Research and Genetic Epidemiology, King’s College London, St. Thomas-Hospital, London, UK4. Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore5. Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Singapore6. Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK7. Department of Ophthalmology, J. Gutenberg University Medical Center, Mainz, Germany8. School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK9. Division of Epidemiology and Clinical Applications, National Eye Institute, Intramural Research Program, National Institutes of Health, Bethesda, USA10. Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto, Japan11. Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia12. Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia13. Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA14. Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, USA15. Department of Ophthalmology, National University Health System, National University of Singapore, Singapore, Singapore16. Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, USA17. Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore18. Center for Human Genetics, Duke University Medical Center, Durham, USA19. Department of Medicine, National University of Singapore, Singapore, Singapore20. Duke-National University of Singapore Graduate Medical School, Singapore, Singapore21. Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore22. Centre for Molecular Epidemiology, National University of Singapore, Singapore, Singapore23. Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK24. Faculty of Medicine, University of Split, Split, Croatia25. Princess Alexandra Eye Pavilion, Edinburgh, UK26. Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan27. Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan28. School of Social and Community Medicine, University of Bristol, Bristol, UK29. Department of Genetics and Population Health, Queensland Institute of Medical Research, Brisbane, Australia30. Medical Research Council Centre of Epidemiology for Child Health, Institute of Child Health, University College London, London, UK31. Institute of Ophthalmology, University College London, London, UK32. Ulverscroft Vision Research Group, University College London, London, UK33. Department of Neurology, Boston University School of Medicine, Boston, USA34. Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, USA35. Institute of Population Genetics, National Research Council, Sassari, Italy36. Glaucoma Service, The Rotterdam Eye Hospital, Rotterdam, The Netherlands37. Institute of Clinical Chemistry and Laboratory Medicine, J. Gutenberg University Medical Center, Mainz, Germany38. Department of Medicine, University of Leipzig, Leipzig, Germany39. Integrated Research and Treatment Center (IFB) AdiposityDiseases, University of Leipzig, Leipzig, Germany40. Estonian Genome Center, University of Tartu, Tartu, Estonia41. The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK42. Department of Clinical Chemistry, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland43. University of Tampere School of Medicine, Tampere, Finland44. Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland45. Department of Clinical Physiology, University of Tampere School of Medicine, Tampere, Finland46. Department of Health Sciences, Gerontology Research Center, University of Jyv?skyl?, Jyv?skyl?, Finland47. Department of Ophthalmology, Central Hospital of Central Finland, Jyv?skyl?, Finland48. Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, USA49. Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology I, Neuherberg, Germany50. Institute of Human Genetics, Technical University Munich, Munich, Germany51. Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands52. Department of Medicine, University of Iceland, Reykjavik, Iceland53. Icelandic Heart Association, Kopavogur, Iceland54. Department of Clinical and Molecular Ophthalmogenetics, Netherlands Institute of Neurosciences (NIN), An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands55. Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands56. Center for Applied Genotyping, Max Planck Institute of Psychiatry, German Research Institute of Psychiatry, Munich, Germany57. Centre for Child and Adolescent Health, University of Bristol, Bristol, UK58. Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany59. INSERM UMRS 937, Pierre and Marie Curie University (UPMC, Paris 6) and Medical School, Paris, France60. Department of Ophthalmology, Centre for Vision Research, Westmead Millennium Institute, University of Sydney, Sydney, Australia61. Department of Ophthalmology, University of Pennsylvania, Philadelphia, USA62. Department of Ophthalmology, Academic Medical Center, Amsterdam, The Netherlands63. Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
  • ISSN:1432-1203
文摘
Myopia is a complex genetic disorder and a common cause of visual impairment among working age adults. Genome-wide association studies have identified susceptibility loci on chromosomes 15q14 and 15q25 in Caucasian populations of European ancestry. Here, we present a confirmation and meta-analysis study in which we assessed whether these two loci are also associated with myopia in other populations. The study population comprised 31 cohorts from the Consortium of Refractive Error and Myopia (CREAM) representing 4 different continents with 55,177 individuals; 42,845 Caucasians and 12,332 Asians. We performed a meta-analysis of 14 single nucleotide polymorphisms (SNPs) on 15q14 and 5 SNPs on 15q25 using linear regression analysis with spherical equivalent as a quantitative outcome, adjusted for age and sex. We calculated the odds ratio (OR) of myopia versus hyperopia for carriers of the top-SNP alleles using a fixed effects meta-analysis. At locus 15q14, all SNPs were significantly replicated, with the lowest P value 3.87 × 10?12 for SNP rs634990 in Caucasians, and 9.65 × 10?4 for rs8032019 in Asians. The overall meta-analysis provided P value 9.20 × 10?23 for the top SNP rs634990. The risk of myopia versus hyperopia was OR 1.88 (95 % CI 1.64, 2.16, P < 0.001) for homozygous carriers of the risk allele at the top SNP rs634990, and OR 1.33 (95 % CI 1.19, 1.49, P < 0.001) for heterozygous carriers. SNPs at locus 15q25 did not replicate significantly (P value 5.81 × 10?2 for top SNP rs939661). We conclude that common variants at chromosome 15q14 influence susceptibility for myopia in Caucasian and Asian populations world-wide.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700