Membrane receptors of cytokinin and their regulatory role in Arabidopsis thaliana plant response to photooxidative stress under conditions of water deficit
详细信息    查看全文
  • 作者:M. N. Danilova (1)
    N. V. Kudryakova (1)
    P. Yu. Voronin (1)
    R. Oelmüller (2)
    V. V. Kusnetsov (1)
    O. N. Kulaeva (1)
  • 关键词:Arabidopsis thaliana ; cytokinins ; histidine protein kinases ; oxidative stress ; qPCR ; RT ; gene expression
  • 刊名:Russian Journal of Plant Physiology
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:61
  • 期:4
  • 页码:434-442
  • 全文大小:195 KB
  • 参考文献:1. Argueso, C.T., Ferreira, F.J., and Kieber, J.J., Environmental perception avenues: the interaction of cytokinin and environmental response pathways, / Plant Cell Environ., 2009, vol. 32, pp. 1147-160. CrossRef
    2. Inoue, T., Higuchi, M., Hashimoto, Y., Seki, M., Kobayashi, M., Kato, T., Tabata, S., Shinozaki, K., and Kakimoto, T., Identification of CRE1 as a cytokinin receptor from / Arabidopsis, / Nature, 2001, vol. 409, pp. 1060-063. CrossRef
    3. Ueguchi, C., Koizumi, H., Suzuki, T., and Mizuno, T., Novel family of sensor histidine kinase genes in / Arabidopsis thaliana, / Plant Cell Physiol., 2001, vol. 42, pp. 231-35. CrossRef
    4. Nishimura, C., Ohashi, Y., Sato, S., Kato, T., Tabata, S., and Ueguchi, C., Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in / Arabidopsis, / Plant Cell, 2004, vol. 16, pp. 1365-377. CrossRef
    5. Sakai, H., Honma, T., Aoyama, T., Sato, S., Kato, T., Tabata, S., and Oka, A., ARR1, a transcription factor for genes immediately responsive to cytokinins, / Science, 2001, vol. 294, pp. 1519-521. CrossRef
    6. Bhargava, A., Clabaugh, I., To, J.P., Maxwell, B.B., Chiang, Y.H., Schaller, G.E., Loraine, A., and Kieber, J.J., Identification of cytokinin responsive genes using Microarray Meta-analysis and RNAseq in / Arabidopsis thaliana, / Plant Physiol., 2013, vol. 162, pp. 272-94. CrossRef
    7. Tran, L.S., Shinozaki, K., and Yamaguchi-Shinozaki, K., Role of cytokinin responsive two-component system in ABA and osmotic stress signaling, / Plant Signal. Behav., 2010, vol. 5, pp. 148-50. CrossRef
    8. Tran, L.S., Urao, T., Qin, F., Maruyama, K., Kakimoto, T., Shinozaki, K., and Yamaguchi-Shinozaki, K., Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in / Arabidopsis, / Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 20 623-0 628. CrossRef
    9. Nishiyama, R., Watanabe, Y., Leyva-Gonzalez, M.A., Ha, C.V., Fujita, Y., Tanaka, M., Seki, M., Yamaguchi-Shinozaki, K., Shinozaki, K., Herrera-Estrella, L., and Tran, L.S., / Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response, / Proc. Natl. Acad. Sci. USA, 2013, vol. 110, pp. 4840-845. CrossRef
    10. Vandenbussche, F., Habricot, Y., Condiff, A.S., Maldiney, R., van der Straeten, D., and Ahmad, M., HY5 is a point of convergence between cryptochrome and cytokinin signaling pathways in / Arabidopsis thaliana, / Plant J., 2007, vol. 49, pp. 428-41. CrossRef
    11. Giraud, E., Ho, L.H., Clifton, R., Carrol, A., Estavillo, G., Tan, Y.F., Howell, K.A., Ivanova, A., Pogson, B.J., Millar, A.H., and Whelan, J., The absence of ALTERNATIVE OXIDASE1a in / Arabidopsis results in acute sensitivity to combined light and drought stress, / Plant Physiol., 2008, vol. 147, pp. 595-10. CrossRef
    12. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water-stress studies, / Plant Soil, 1973, vol. 39, pp. 205-07. CrossRef
    13. Heath, L.R. and Packer, L., Photoperoxidation in isolated chloroplasts. Kinetics and stoichiometry of fatty acid peroxidation, / Arch. Biochem. Biophys., 1968, vol. 125, pp. 189-98. CrossRef
    14. Vernon, L.P., Spectrophotometric determination of chlorophylls and pheophytins in plant extracts, / Anal. Chem., 1960, vol. 32, pp. 1144-150. CrossRef
    15. Shreiber, U., / Chlorophyll Fluorescence and Photosynthetic Energy Conversion: Simple Introductory Experiments with the TEACHING-PAM Chlorophyll Fluorometer, Effeltrich: Heinz Walz GmbH, 1997.
    16. Jefferson, R.A., Kavanagh, T.A., and Bevan, M.V., GUS-fusions: glucuronidase as a sensitive and versatile gene fusion marker in higher plants, / EMBO J., 1987, vol. 6, pp. 3901-907.
    17. Belozerova, N.S., Pozhidaeva, E.S., Shugaev, V.V., and Kuznetsov, Vl.V., Salicylic acid differently regulates the transcription intensity of the mitochondrial genes of / Lupinus luteus L., / Dokl. Biochem. Biophys. Mol. Biol., 2011, vol. 440, pp. 207-10. CrossRef
    18. Kusnetsov, V.V., Oelmüller, R., Sarwat, M., Porfirova, S.A., Cherepneva, G.N., Herrmann, R.G., and Kulaeva, O.N., Cytokinins, abscisic acid and light affect accumulation of chloroplast proteins in / Lupinus luteus cotyledons, without notable effect on steady-state mRNA levels, / Planta, 1994, vol. 194, pp. 318-27. CrossRef
    19. Zubo, Y.O., Yamburenko, M.V., Selivankina, S.Y., Shakirova, F.M., Avalbaev, A.M., Kudryakova, N.V., Zubkova, N.K., Liere, K., Kulaeva, O.N., Kusnetsov, V.V., and B?rner, T., Cytokinin stimulates chloroplast transcription in detached barley leaves, / Plant Physiol., 2008, vol. 148, pp. 1082-093. CrossRef
    20. Tzvetkova-Chevolleau, T., Franck, F., Alawady, A.E., Dall’Osto, L., Carriere, F., Bassi, R., Grimm, B., Nussaume, L., and Havaux, M., The light stress-induced protein ELIP2 is a regulator of chlorophyll synthesis in / Arabidopsis thaliana, / Plant J., 2007, vol. 50, pp. 795-09. CrossRef
    21. Yurina, N.P., Mokerova, D.V., and Odintsova, M.S., Light-inducible stress plastid proteins of phototrophs, / Russ. J. Plant Physiol., 2013, vol. 60, pp. 577-88. CrossRef
    22. Nishiyama, R., Watanabe, Y., Fujita, Y., Le, D.T., Kojima, M., Werner, T., Vankova, R., Yamaguchi-Shinozaki, K., Shinozaki, K., Kakimoto, T., Sakakibara, H., Schmülling, T., and Tran, L.S., Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis, / Plant Cell, 2011, vol. 23, pp. 2169-183. CrossRef
    23. Alvarez, S., Marsh, E.L., Schroeder, S.G., and Schachtman, D.P., Metabolomic and proteomic changes in the xylem sap of maize under drought, / Plant Cell Environ., 2008, vol. 31, pp. 325-40. CrossRef
    24. Kang, N.Y., Cho, C., Kim, N.Y., and Kim, J., Cytokinin receptor-dependent and receptor-independent pathways in the dehydration response of / Arabidopsis thaliana, / J. Plant Physiol., 2012, vol. 169, pp. 1382-391. CrossRef
    25. Shevyakova, N.I., Bakulina, E.A., and Kuznetsov, Vl.V., Proline antioxidant role in the common ice plant subjected to salinity and paraquat treatment inducing oxidative stress, / Russ. J. Plant Physiol., 2009, vol. 56, pp. 663-69. CrossRef
    26. Kiyosue, T., Yoshiba, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K., A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is up-regulated by proline but downregulated by dehydration in / Arabidopsis, / Plant Cell, 1996, vol. 8, pp. 1323-335. CrossRef
    27. Chernyad’ev, I.I., The protective action of cytokinins on the photosynthetic machinery and productivity of plants under stress (review), / Appl. Biochem. Microbiol., 2009, vol. 45, pp. 351-62. CrossRef
    28. Xu, F., Yuan, S., and Lin, H.H., Response of mitochondrial alternative oxidase (AOX) to light signals, / Plant Signal. Behav., 2011, vol. 5, pp. 148-50.
    29. Ha, S., Vankova, R., Yamaguchi-Shinozaki, K., Shinozaki, K., and Tran, L.S., Cytokinins: metabolism and function in plant adaptation to environmental stresses, / Trends Plant Sci., 2012, vol. 17, pp. 172-79. CrossRef
    30. Marhavy, P., Bielach, A., Abas, L., Abuzeineh, A., Duclercq, J., Tanaka, H., Pa?ezová, M., Petrá?ek, J., Friml, J., Kleine-Vehn, J., and Benková, E., Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis, / Dev. Cell, 2011, vol. 21, pp. 796-04. CrossRef
  • 作者单位:M. N. Danilova (1)
    N. V. Kudryakova (1)
    P. Yu. Voronin (1)
    R. Oelmüller (2)
    V. V. Kusnetsov (1)
    O. N. Kulaeva (1)

    1. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya ul. 35, Moscow, 127276, Russia
    2. Institute of General Botany and Plant Physiology, University of Jena, Jena, Germany
  • ISSN:1608-3407
文摘
Mild photooxidative stress combined with water deficit affected the expression of genes of cytokinin (CK) signal transduction. According to qRT-PCR data, these stress factors suppressed the expression of CK receptor genes AHK2 and AHK3 and the ARR5 response regulator gene, and slightly activated the expression of AHK4 gene. The absence of AHK2 and AHK3 receptors in Arabidopsis thaliana (L.) Heynh. mutants affected markedly the content of low-molecular-weight antioxidants (anthocyanins, carotenoids, proline) and resulted in the CK-dependent changes in the expression of genes, markers of oxidative stress, including RAB18, CHS, P5CS1, and PRODH1, under both normal and stressful conditions. At the same time, knockout of a single receptor gene or their combination did not induce CK-specific changes in the stress-activated expression of AOX1a, the marker gene of oxidative stress. CK receptor mutants lacked a statistically significant genotype influence on the photosystem II and photosystem I fluorescence yield under normal and stressful conditions. However, the system of CK perception was shown to be involved in the transcription regulation of the genes of the photosynthetic apparatus, ELIP2 and PSBS. Thus, CKs play an important role in plant responses to the photooxidative stress. The inactivation of the CK signaling system components proves to be one of the main strategies of Arabidopsis plant adaptation to the high light under conditions of water deficit.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700