Content of Osmolytes and Flavonoids under Salt Stress in Arabidopsis thaliana Plants Defective in Jasmonate Signaling
详细信息    查看全文
  • 作者:T. O. Yastreb ; Yu. E. Kolupaev ; A. A. Lugovaya…
  • 关键词:Arabidopsis thaliana ; adaptation ; flavonoids ; jasmonic acid ; protein JIN1/MYC2 ; proline ; salt stress ; signaling
  • 刊名:Applied Biochemistry and Microbiology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:52
  • 期:2
  • 页码:210-215
  • 全文大小:441 KB
  • 参考文献:1.Vasyukova, N.I. and Ozeretskovskaya, O.L., Russ. J. Plant Physiol., 2009, vol. 56, no. 5, pp. 581–590.CrossRef
    2.Wasternack, C. and Hause, B., Ann. Bot., 2013, vol. 111, no. 6, pp. 1021–1058.CrossRef PubMed PubMedCentral
    3.Dombrecht, B., Xue, G.P., Sprague, S.J., Kirkegaard, J.A., Ross, J.J., Reid, J.B., Fitt, G.P., Sewelam, N., Schenk, P.M., Manners, J.M., and Kazan, K., Plant Cell, 2007, vol. 19, no. 7, pp. 2225–2245.CrossRef PubMed PubMedCentral
    4.Guo, J., Pang, Q., Wang, L., Yu, P., Li, N., and Yan, X., Proteome Sci., 2012, vol. 10, no. 1, pp. 1–13.CrossRef
    5.Laurie-Berry, N., Joardar, V., Street, I.H., and Kunkel, B.N., Mol. Plant Microbe Interact., 2006, vol. 19, no. 7, pp. 789–800.CrossRef PubMed
    6.Pedranzani, H., Racagni, G., Alemano, S., Miersch, O., Ramirez, I., Pena-Cortes, H., Taleisnik, E., Machado-Domenech, E., and Abdala, G., Plant Growth Regul., 2003, vol. 41, no. 2, pp. 149–158.CrossRef
    7.Walia, H., Wilson, C., Condamine, P., Liu, X., Ismail, A.M., and Close, T.J., Plant Cell Environ., 2007, vol. 30, no. 4, pp. 410–421.CrossRef PubMed
    8.Shakirova, F.M., Sakhabutdinova, A.R., Ishdavletova, R.S., and Lastochkina, O.V., Agrokhimiya, 2010, no. 7, pp. 26–26.
    9.Dong, H., Zhen, Z., Peng, J., Chang, L., Gong, Q., and Wang, N.N., J. Exp. Bot., 2011, vol. 62, no. 14, pp. 4875–4887.CrossRef PubMed PubMedCentral
    10.Ramegowda, V., Senthil-Kumar, M., Udayakumar, M., and Mysore, K.S., BMC Plant Biol., 2013, vol. 13 (193). doi: 10.1186/1471-2229-13-193
    11.Ismail, A., Riemann, M., and Nick, P., J. Exp. Bot., 2012, vol. 63, no. 5, pp. 2127–2139.CrossRef PubMed PubMedCentral
    12.Ramirez, V., Coego, A., Lopez, A., Agorio, A., Flors, V., and Vera, P., Plant J., 2009, vol. 58, no. 4, pp. 578–591.CrossRef PubMed
    13.Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K., Plant Cell, 2003, vol. 15, no. 1, pp. 63–78.CrossRef PubMed PubMedCentral
    14.Ton, J., Flors, V., and Mauch-Mani, B., Trends Plant Sci., 2009, vol. 14, no. 6, pp. 310–317.CrossRef PubMed
    15.Lackman, P., Gonzalez-Guzman, M., Tilleman, S., Carqueijeiro, I., Perez, A.C., Moses, T., Seo, M., Kanno, Y., Hakkinen, S.T., Montagu, M.C.E.V., Thevelein, J.M., Maaheimo, H., Oksman-Caldentey, K.M., Rodriguez, P.L., Rischer, H., and Goossens, A., Proc. Natl. Acad. Sci. USA, 2011, vol. 108, no. 14, pp. 5891–5896.CrossRef PubMed PubMedCentral
    16.Kavi Kishor, P.B. and Sreenivasulu, N., Plant Cell Environ., 2014, vol. 37, no. 2, pp. 300–311.CrossRef PubMed
    17.Carcia, A.B., Engler, J.A., Iyer, S., Gerats, T., Van Montagu, M., and Caplan, A.B., Plant Physiol., 1997, vol. 115, no. 1, pp. 159–169.
    18.Khlestkina, E.K., Cereal Res. Commun., 2013, vol. 41, no. 2, pp. 185–198.CrossRef
    19.Iqbal, N., Umar, S., Khan, N.A., and Khan, M.I.R., Environ. Exp. Bot., 2014, vol. 100, no. 1, pp. 34–42.CrossRef
    20.Sheteawi, S.A., Int. J. Agri. Biol., 2007, vol. 9, no. 3, pp. 473–478.
    21.Zhao, M.L., Wang, J.N., Shan, W., Fan, J.G., Kuang, J.F., Wu, K.Q., Li, X.P., Chen, W.X., He, F.Y., Chen, J.Y., and Lu, W.J., Plant Cell Environ., 2013, vol. 36, no. 1, pp. 30–51.CrossRef PubMed
    22.Li, T., Jia, K.P., Lian, H.L., Yang, X., Li, L., and Yang, H.Q., Biochem. Biophys. Res. Commun., 2014, vol. 454, no. 1, pp. 78–83.CrossRef PubMed
    23.Yastreb, T.O., Kolupaev, Yu.E., Shvidenko, N.V., Lugovaya, A.A., and Dmitriev, A.P., Appl. Biochem. Microbiol., 2015, vol. 51, no. 4, pp. 451–454.CrossRef
    24.Gibeaut, D.M., Hulett, J., Cramer, G.R., and Seemann, J.R., Plant Physiol., 1997, vol. 115, no. 2, pp. 317–319.CrossRef PubMed PubMedCentral
    25.Semchuk, N.M., Vasylyk, Yu.V., Lushchak, Ok.V., and Lushchak, V.I., Ukr. Biokhim. Zh., 2012, vol. 84, no. 4, pp. 41–48.
    26.Merzlyak, M.N., Pogosyan, S.I., Yuferova, S.G., and Shevyreva, V.A., Biol. Nauki, 1978, no. 9, pp. 86–86.
    27.Zhao, K., Fan, H., Zhou, S., and Song, J., Plant Sci., 2003, vol. 165, no. 4, pp. 837–844.CrossRef
    28.Kolupaev, Yu.E., Ryabchun, N.I., Vainer, A.A., Yastreb, T.O., and Oboznyi, A.I., Russ. J. Plant Physiol., 2015, vol. 62, no. 4, pp. 499–506.CrossRef
    29.Bates, L.S., Walden, R.P., and Tear, G.D., Plant Soil, 1973, vol. 39, no. 1, pp. 205–210.CrossRef
    30.Nogues, S. and Bakern, R., J. Exp. Bot., 2000, vol. 51, no. 348, pp. 1309–1317.CrossRef PubMed
    31.Pietrini, F. and Massacci, A., Photosynth. Res., 1998, vol. 58, no. 3, pp. 213–219.CrossRef
    32.Munns, R. and Tester, M., Annu. Rev. Plant Biol., 2008, vol. 59, pp. 651–681.CrossRef PubMed
    33.Havaux, M. and Kloppstech, K., Planta, 2001, vol. 213, no. 6, pp. 953–966.CrossRef
    34.Gould, K.S. and Lister, C., in Flavonoids: Chemistry, Biochemistry, and Applications, Andersen, O.M. and Markham, K.R., Eds., Boca Raton: Taylor and Francis Group, 2006, pp. 397–442.
    35.Szabados, L. and Savoure, A., Trends Plant Sci., 2009, vol. 15, no. 2, pp. 89–97.CrossRef PubMed
    36.Yang, S.L., Shan-Shan, L., and Gong, M., J. Plant Physiol., 2009, vol. 166, no. 15, pp. 1694–1699.CrossRef PubMed
    37.Suhita, D., Raghavendra, A.S., Kwak, J.M., and Vavasseur, A., Plant Physiol., 2004, vol. 134, no. 4, pp. 1536–1545.CrossRef PubMed PubMedCentral
    38.Kumari, G.J., Reddy, A.M., Naik, S.T., Kumar, S.G., Prasanthi, J., Sriranganayakulu, G., Reddy, P.C., and Sudhakar, C., Biol. Plant., 2006, vol. 50, no. 2, pp. 219–226.CrossRef
    39.Neill, S.O. and Gould, K.S., Functional Plant Biol., 2003, vol. 30, no. 8, pp. 865–873.CrossRef
    40.Dmitriev, A.P., Kovbasenko, R.V., Avdeeva, L.V., Lapa, S.V., and Kovbasenko, V.M., Signal’nye sistemy rastenii i formirovanie ustoichivosti protiv bioticheskogo stressa (Signaling Systems of Plants and Formation of Resistance to Biotic Stress), Kiev: Feniks, 2015.
  • 作者单位:T. O. Yastreb (1)
    Yu. E. Kolupaev (1)
    A. A. Lugovaya (1)
    A. P. Dmitriev (2)

    1. Dokuchaev National Agrarian University, Khar’kov, 62483, Ukraine
    2. Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kiev, 03143, Ukraine
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Microbiology
    Medical Microbiology
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3024
文摘
The effects of the salt stress (200 mM NaCl) and exogenous jasmonic acid (JA) on levels of osmolytes and flavonoids in leaves of four-week-old Arabidopsis thaliana L. plants of the wild-type (WT) Columbia-0 (Col-0) and the mutant jin1 (jasmonate insensitive 1) with impaired jasmonate signaling were studied. The increase in proline content caused by the salt stress was higher in the Col-0 plants than in the mutant jin1. This difference was especially marked if the plants had been pretreated with exogenous 0.1 μM JA. The sugar content increased in response to the salt stress in the JA-treated WT plants but decreased in the jin1 mutant. Treatment with JA of the WT plants but not mutant defective in jasmonate signaling also enhanced the levels of anthocyanins and flavonoids absorbed in UV-B range in leaves. The presence of JA increased salinity resistance of the Col-0 plants, since the accumulation of lipid peroxidation products and growth inhibition caused by NaCl were less pronounced. Under salt stress, JA almost did not render a positive effect on the jin1 plants. It is concluded that the protein JIN1/MYC2 is involved in control of protective systems under salt stress.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700