Characterization of the Saccharomyces cerevisiae ATP-Interactome using the iTRAQ-SPROX Technique
详细信息    查看全文
  • 作者:M. Ariel Geer ; Michael C. Fitzgerald
  • 关键词:Mass spectrometry ; Proteomics ; Thermodynamics ; Protein folding ; Chemical denaturation ; Ligand binding
  • 刊名:Journal of The American Society for Mass Spectrometry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:27
  • 期:2
  • 页码:233-243
  • 全文大小:840 KB
  • 参考文献:1.Alder, N.N., Theg, S.M.: Energy use by biological protein transport pathways. Trends Biochem. Sci. 28, 442–451 (2003)CrossRef
    2.Buttgereit, F., Brand, M.D.: A hierarchy of ATP-consuming processes in mammalian-cells. Biochem. J. 312, 163–167 (1995)CrossRef
    3.Clare, D.K., Saibil, H.R.: ATP-driven molecular chaperone machines. Biopolymers 99, 846–859 (2013)CrossRef
    4.Fawaz, M.V., Topper, M.E., Firestine, S.M.: The ATP-grasp enzymes. Bioorg. Chem. 39, 185–191 (2011)CrossRef
    5.Palfrey, H.C., Pewitt, E.B.: The ATP and Mg2+ dependence of Na+-K+-2cl- cotransport reflects a requirement for protein-phosphorylation - studies using calyculin-A. Pflug Arch. Eur. J. Phys 425, 321–328 (1993)CrossRef
    6.Ali, M.M., Roe, S.M., Vaughan, C.K., Meyer, P., Panaretou, B., Piper, P.W., Prodromou, C., Pearl, L.H.: Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440, 1013–1017 (2006)
    7.Balbo, P.B., Bohm, A.: Mechanism of poly(A) polymerase: structure of the enzyme-MgATP-RNA ternary complex and kinetic analysis. Structure 15, 1117–1131 (2007)CrossRef
    8.Cavarelli, J., Eriani, G., Rees, B., Ruff, M., Boeglin, M., Mitschler, A., Martin, F., Gangloff, J., Thierry, J. C., Moras, D.: The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction. EMBO J. 13, 327–337 (1994)
    9.Dautant, A., Velours, J., Giraud, M.F.: Crystal structure of the Mg.ADP-inhibited state of the yeast F1c10-ATP synthase. J. Biol. Chem. 285, 29502–29510 (2010)
    10.Dupin, A.E., Fribourg, S.: Structural basis for ATP loss by C1p1p in a G135R mutant protein. Biochimie 101C, 203–207 (2014)CrossRef
    11.Fenn, S., Breitsprecher, D., Gerhold, C.B., Witte, G., Faix, J., Hopfner, K.P.: Structural biochemistry of nuclear actin-related proteins 4 and 8 reveals their interaction with actin. EMBO J. 30, 2153–2166 (2011)CrossRef
    12.Liu, Q., Hendrickson, W.A.: Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131, 106–120 (2007)CrossRef
    13.Liu, X., Bushnell, D.A., Silva, D.A., Huang, X., Kornberg, R.D.: Initiation complex structure and promoter proofreading. Science 333, 633–637 (2011)CrossRef
    14.Noble, C.G., Beuth, B., Taylor, I.A.: Structure of a nucleotide-bound Clp1-Pcf11 polyadenylation factor. Nucleic Acids Res. 35, 87–99 (2007)CrossRef
    15.Nolen, B., Ngo, J., Chakrabarti, S., Vu, D., Adams, J.A., Ghosh, G.: Nucleotide-induced conformational changes in the Saccharomyces cerevisiae SR protein kinase, Sky1p, revealed by X-ray crystallography. Biochemistry 42, 9575–9585 (2003)CrossRef
    16.Otomo, T., Tomchick, D.R., Otomo, C., Panchal, S.C., Machius, M., Rosen, M.K.: Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain. Nature 433, 488–494 (2005)CrossRef
    17.Padyana, A.K., Qiu, H., Roll-Mecak, A., Hinnebusch, A.G., Burley, S.K.: Structural basis for autoinhibition and mutational activation of eukaryotic initiation factor 2alpha protein kinase GCN2. J. Biol. Chem. 280, 29289–29299 (2005)CrossRef
    18.Polier, S., Dragovic, Z., Hartl, F.U., Bracher, A.: Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 133, 1068–1079 (2008)CrossRef
    19.Robinson, G.C., Bason, J.V., Montgomery, M.G., Fearnley, I.M., Mueller, D.M., Leslie, A.G., Walker, J.E.: The structure of F(1)-ATPase from Saccharomyces cerevisiae inhibited by its regulatory protein IF(1). Open Biology 3, 120164 (2013)CrossRef
    20.Schmidt, H., Gleave, E.S., Carter, A.P.: Insights into dynein motor domain function from a 3.3-A crystal structure. Nat. Struct. Mol. Biol. 19, 492–497, S491 (2012)
    21.Ugochukwu, E., Lovering, A.L., Mather, O.C., Young, T.W., White, S.A.: The crystal structure of the cytosolic exopolyphosphatase from Saccharomyces cerevisiae reveals the basis for substrate specificity. J. Mol. Biol. 371, 1007–1021 (2007)CrossRef
    22.Vorobiev, S., Strokopytov, B., Drubin, D.G., Frieden, C., Ono, S., Condeelis, J., Rubenstein, P. A., Almo, S. C.: The structure of nonvertebrate actin: implications for the ATP hydrolytic mechanism. Proc. Natl. Adad. Sci U.S.A. 100, 5760–5765 (2003)CrossRef
    23.Watson, H.C., Walker, N.P., Shaw, P.J., Bryant, T.N., Wendell, P.L., Fothergill, L.A., Perkins, R.E., Conroy, S.C., Dobson, M.J., Tuite, M.F., Kinsgman, A.J., Kingsman, S.M.: Sequence and structure of yeast phosphoglycerate kinase. EMBO J. 1, 1635–1640 (1982)
    24.Westover, K.D., Bushnell, D.A., Kornberg, R.D.: Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center. Cell 119, 481–489 (2004)CrossRef
    25.Kubala, M.: ATP-binding to P-type ATPases as revealed by biochemical, spectroscopic, and crystallographic experiments. Proteins 64, 1–12 (2006)CrossRef
    26.McAllister, F.E., Niepel, M., Haas, W., Huttlin, E., Sorger, P.K., Gygi, S.P.: Mass spectrometry based method to increase throughput for kinome analyses using ATP probes. Anal. Chem. 85, 4666–4674 (2013)CrossRef
    27.Wolfe, L.M., Veeraraghavan, U., Idicula-Thomas, S., Schurer, S., Wennerberg, K., Reynolds, R., Besra, G.S., Dobos, K.M.: A chemical proteomics approach to profiling the ATP-binding proteome of Mycobacterium tuberculosis. Mol. Cell Proteomics 12, 1644–1660 (2013)CrossRef
    28.Patricelli, M.P., Szardenings, A.K., Liyanage, M., Nomanbhoy, T.K., Wu, M., Weissig, H., et al.: Functional interrogation of the kinome using nucleotide acyl phosphates. Biochemistry 46, 350–358 (2007)CrossRef
    29.Patricelli, M.P., Nomanbhoy, T.K., Wu, J., Brown, H., Zhou, D., Zhang, J., Jagannathan, S., Aban, A., Okerberg, E., Herring, C., Nordin, B., Weissig, H., Yang, Q., Lee, J.D., Gray, N.S., Kozarich, J.W..: In situ kinase profiling reveals functionally relevant properties of native kinases. Chem. Biol. 18, 699–710 (2011)
    30.Adachi, J., Kishida, M., Watanabe, S., Hashimoto, Y., Fukamizu, K., Tomonaga, T.: Proteome-wide discovery of unknown ATP-binding proteins and kinase inhibitor target proteins using an ATP probe. J. Prot. Res. 13, 5461–5470 (2014)CrossRef
    31.Xiao, Y., Guo, L., Jiang, X., Wang, Y.: Proteome-wide discovery and characterizations of nucleotide-binding proteins with affinity-labeled chemical probes. Anal. Chem. 85, 3198–3206 (2013)CrossRef
    32.Xiao, Y., Guo, L., Wang, Y.: Isotope-coded ATP probe for quantitative affinity profiling of ATP-binding proteins. Anal. Chem. 85, 7478–7486 (2013)CrossRef
    33.Liu, P.F., Kihara, D., Park, C.: Energetics-based discovery of protein-ligand interactions on a proteomic scale. J. Mol. Biol. 408, 147–162 (2011)CrossRef
    34.Chang, Y., Schlebach, J.P., VerHeul, R.A., Park, C.: Simplified proteomics approach to discover protein-ligand interactions. Protein Sci. 21, 1280–1287 (2012)CrossRef
    35.Tran, D.T., Adhikari, J., Fitzgerald, M.C.: Stable isotope labeling with amino acids in cell culture (SILAC)-based strategy for proteome-wide thermodynamic analysis of protein-ligand binding interactions. Mol. Cell. Proteomics 13, 1800–1813 (2014)CrossRef
    36.Savitski, M.M., Reinhard, F.B., Franken, H., Werner, T., Savitski, M.F., Eberhard, D., Molina, D.M, Jafari, R., Dovega, R.B., Klaeger, S., Kuster, B., Nordlund, P., Bantscheff, M., Drewes, G.: Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346, 1255784 (2014)
    37.Strickland, E.C., Geer, M.A., Tran, D.T., Adhikari, J., West, G.M., DeArmond, P.D., Xu, Y., Fitzgerald, M.C.: Thermodynamic analysis of protein-ligand binding interactions in complex biological mixtures using the stability of proteins from rates of oxidation. Nat. Protoc. 8, 148–161 (2013)CrossRef
    38.Myers, J.K., Pace, C.N., Scholtz, J.M.: Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 4, 2138–2148 (1995)CrossRef
    39.Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K.P., Kuhn, M., Bork, P., Jensen, L.J., von Mering, C.: STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015)
    40.West, G.M., Tang, L., Fitzgerald, M.C.: Thermodynamic analysis of protein stability and ligand binding using a chemical modification- and mass spectrometry-based strategy. Anal. Chem. 80, 4175–4185 (2008)CrossRef
    41.Ng, S.K., Hamilton, I.R.: Purification and regulatory properties of pyruvate kinase from Veillonella parvula. J. Bacteriol. 122, 1274–1282 (1975)
    42.Seidler, N.W.: Dynamic oligomeric properties. Adv. Exp. Med. Biol. 985, 207–247 (2013)CrossRef
    43.Liu, P.F., Park, C.: Selective stabilization of a partially unfolded protein by a metabolite. J. Mol. Biol. 422, 403–413 (2012)CrossRef
    44.Gierasch, L.M.: Caught in the act: how ATP binding triggers cooperative conformational changes in a molecular machine. Mol. Cell 9, 3–5 (2002)CrossRef
    45.Mi, H.Y., Muruganujan, A., Casagrande, J.T., Thomas, P.D.: Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 8, 1551–1566 (2013)CrossRef
    46.Saraste, M., Sibbald, P.R., Wittinghofer, A.: The P-loop—a common motif in ATP-binding and GTP-binding proteins. Trends Biochem. Sci. 15, 430–434 (1990)CrossRef
  • 作者单位:M. Ariel Geer (1)
    Michael C. Fitzgerald (1)

    1. Department of Chemistry, Duke University, Durham, NC, 27708-0346, USA
  • 刊物主题:Analytical Chemistry; Biotechnology; Organic Chemistry; Proteomics; Bioinformatics;
  • 出版者:Springer US
  • ISSN:1879-1123
文摘
The stability of proteins from rates of oxidation (SPROX) technique was used in combination with an isobaric mass tagging strategy to identify adenosine triphosphate (ATP) interacting proteins in the Saccharomyces cerevisiae proteome. The SPROX methodology utilized in this work enabled 373 proteins in a yeast cell lysate to be assayed for ATP interactions (both direct and indirect) using the non-hydrolyzable ATP analog, adenylyl imidodiphosphate (AMP-PNP). A total of 28 proteins were identified with AMP-PNP-induced thermodynamic stability changes. These protein hits included 14 proteins that were previously annotated as ATP-binding proteins in the Saccharomyces Genome Database (SGD). The 14 non-annotated ATP-binding proteins included nine proteins that were previously found to be ATP-sensitive in an earlier SPROX study using a stable isotope labeling with amino acids in cell culture (SILAC)-based approach. A bioinformatics analysis of the protein hits identified here and in the earlier SILAC-SPROX experiments revealed that many of the previously annotated ATP-binding protein hits were kinases, ligases, and chaperones. In contrast, many of the newly discovered ATP-sensitive proteins were not from these protein classes, but rather were hydrolases, oxidoreductases, and nucleic acid-binding proteins.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700