Uniaxial tension study of calcium silicate hydrate (C–S–H): structure, dynamics and mechanical properties
详细信息    查看全文
  • 作者:Dongshuai Hou ; Jinrui Zhang ; Zongjin Li ; Yu Zhu
  • 关键词:Molecular simulation ; C–S–H ; Uniaxial tension test ; Ca/Si ratio
  • 刊名:Materials and Structures
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:48
  • 期:11
  • 页码:3811-3824
  • 全文大小:3,359 KB
  • 参考文献:1.Alexander KM (1959) Strength of the cement aggregate bond. ACI J Proc 56:377–390
    2.Alizadeh R, Beaudoin JJ, Raki L (2011) Mechanical properties of calcium silicate hydrates. Mater Struct 44:13–28CrossRef
    3.Allen AJ, Thomas JJ, Jennings HM (2007) Composition and density of nanoscale calcium silicate hydrate in cement. Nat Mater 6:311–316CrossRef
    4.Beaudoin JJ, Feldman RF, Tumidajski PJ (1994) Pore structure of hardened portland-cement pastes and its influence on properties. Adv Cem Based Mater 1:224–236CrossRef
    5.Birchall JD, Howard AJ, Kendall K (1981) Flexural strength and porosity of cements. Nature 289:388–390CrossRef
    6.Bonnacorsi E, Merlino S, Taylor H (2004) the crystal structure of Jennite Ca9Si6O18(OH)6 8H2O. Cem Concr Res 34:1481–1488CrossRef
    7.Bonnaud PA, Ji Q, Coasne B, Pellenq RJM, Van Vliet KJ (2012) Thermodynamics of water confined in porous calciumsilicatehydrates. Langmuir 28:11422–11432CrossRef
    8.Chen JJ, Thomas JJ, Taylor HFW, Jennings HM (2004) Solubility and structure of calcium silicate hydrate. Cem Concr Res 34:1499–1519CrossRef
    9.Chen XD, Wu SX, Zhou JK (2013) Influence of porosity on compressive and tensile strength of cement mortar. Constr Build Mater 40:869–874CrossRef
    10.Chowdhary J, Ladanyi BM (2009) Hydrogen Bond Dynamics at the Water/Hydrocarbon Interface. J Phys Chem B 113:4045–4053CrossRef
    11.Cong X, Kirkpatrick R (1996) 29Si MAS NMR study of the structure of calcium silicate hydrate. Adv Cem Based Mater 3:144–156CrossRef
    12.Costantinide G, Ulm F (2006) The nanogranular nature of C-S–H. J Mech Phys Solids 55:64–90CrossRef
    13.Costantinides G, Ulm F (2004) The effect of two types of C-S-H on the elasticity of cement-based materials: result from nanoindentation and micromechanical modeling. Cem Concr Res 34:67–80CrossRef
    14.Dolado JS, Griebel M, Hamaekers J (2007) A molecular dynamic study of cementitious calcium silicate hydrate (C–S–H) gels. J Am Ceram Soc 90:3938–3942
    15.Garofalini SH, Zhang S (2010) Molecular dynamics simulations of the effect of the composition of the intergranular film on fracture in Si3N4. J Am Ceram Soc 93:235–240CrossRef
    16.Hamid S (1981) The crystal structure of the 11 A natural tobermorite Ca2.25Si3 O7.5(OH)1.5H2O. Zeitschrifit fur Kristallographie 154:189–198
    17.Heinz H, Lin TJ, Kishore Mishra R, Emami FS (2013) Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. Langmuir 29:1754–1765CrossRef
    18.Heinz H, Suter UW (2004) Atomic charges for classical simulations of polar systems. J Phys Chem B 108:18341–18352CrossRef
    19.Ishikawa K, Asaoka K (1995) Estimation of ideal mechanical strength and critical porosity of calcium-phosphate cement. J Biomed Mater Res 29:1537–1543CrossRef
    20.Janika JA, Kurdowsk W, Podsiadey R, Samset J (2001) Fraxtal structure of CSH and tobermorite phases. Acta Phys Polonic 100:529–537
    21.Jennings HM (2000) A model for the microstructure of calcium silicate hydrate in cement paste. Cem Concr Res 30(30):101–116CrossRef
    22.Jennings HM (2008) Refinements to colloid model of C–S–H in cement: CM II. Cem Concr Res 38:275–289CrossRef
    23.Ji Q, Pellenq RJM, Van Vliet KJ (2012) Comparison of computational water models for simulation of calcium silicate hydrate: computational Material. Science 53:234–240
    24.Kendall K, Howard AJ, Birchall JD (1983) The relation between porosity, microstructure and strength, and the approach to advanced cement-based materials. Philos Trans R Soc A 310:139–153CrossRef
    25.Lammps, 2008, LAMMPS Molecular Dynamics Simulator
    26.Lesko S, Lesniewska E, Nonat A, Mutin J, Goudonnet J (2001) Investigation by atomic force microscopy of forces at the origin of cement cohesion. Ultramicroscopy 82(1–2):11–21CrossRef
    27.Luzar A, Chandler D (1996) Hydrogen-bond kinetics in liquid water. Nature 379:55–57CrossRef
    28.Mai YW, Cotterell B (1985) Porosity and mechanical-properties of cement mortar. Cem Concr Res 15:995–1002CrossRef
    29.Manzano H, Dolado JS, Ayuela A (2009) Elastic properties of the main species present in Portland cement pastes: Acta Mater 57(57):1666–1674CrossRef
    30.Manzano H, Masoero E, Arbeloa IL, Jennings HM (2013) Molecular modelling of shear deformations in ordered and disordered Calcium Silicate Hydrates. Soft Matter 9:7333–7341CrossRef
    31.Manzano H, Moeini S, Marinelli F, van Duin ACT, Ulm FJ, Pellenq RJM (2011) Confined water dissociation in microporous defective silicates: mechanism, dipole distribution, and impact on substrate properties. J Am Chem Soc 134:2208–2215CrossRef
    32.Merlino S, Bonnacorsi E, Armbruster T (2001) The real structure of tobermorite 11 A: normal and anomalous forms, OD character and polyptic modifications. Eur J Mineral 13:577–590CrossRef
    33.Mishra RK, Flatt RJ, Heinz H (2013) Force field for tricalcium silicate and insight into nanoscale properties: cleavage, initial hydration, and adsorption of organic molecules. J Phys Chem C 117:10417–10432CrossRef
    34.Muller ACA, Scrivener KL, Gajewicz AM, McDonald PJ (2013) Densification of C–S–H measured by H NMR relaxometry. J Phys Chem C 117:403–412CrossRef
    35.Murray SJ, Subramani VJ, Selvam RP, Hall KD (2010) Molecular dynamics to understand the mechanical behavior of cement paste. J Transp Res Board 2142:75–82CrossRef
    36.Nonat A (2004) The structure and stoichiometry of CSH. Cem Concr Res 34:1521–1528CrossRef
    37.Pedone A, Malavasi G, Menziani MC, Segre U, Cormack AN (2008) Molecular dynamics studies of stress–strain behavior of silica glass under a tensile load. Chem Mater 20:4356–4366CrossRef
    38.Pelisser F, Gleize PJP, Mikowski A (2012) Effect of the Ca/Si molar ratio on the micro/nanomechanical properties of synthetic C–S–H measured by nanoindentation. J Phys Chem C 116:17219–17227CrossRef
    39.Pellenq RJM, Kushima A, Shahsavari R, Van Vliet KJ, Buehler MJ, Yip S (2009) A realistic molecular model of cement hydrates. PNAS 106:16102–16107CrossRef
    40.Pellenq RJM, Lequeux N, Damme HV (2008) Engineering the bonding scheme in C–S–H: the iono-covalent framework. Cem Concr Res 38:159–174CrossRef
    41.Plassard C, Lesniewska E, Pochard I, Nonat A (2005) Nanoscale experimental investigation of particle interactions at the origin of the cohesion of cement. Langmuir 21:7263–7270CrossRef
    42.Puibasset J, Pellenq RJM (2003) Water adsorption on hydrophilic mesoporous and plane silica substrates: a grand canonical Monte Carlo simulation study. J Chem Phys 118:5613CrossRef
    43.Puibasset J, Pellenq RJM (2008) Grand canonical Monte Carlo simulation study of water adsorption in silicalite at 300 K. Phys Chem B 112:6390–6397CrossRef
    44.Richardson IG (2008) The calcium silicate hydrates. Cem Concr Res 38:137–158CrossRef
    45.Shahsavari R, Pellenq RJM, Ulm FJ (2011) Empirical force fileds for complex hydrated calcio-silicate layered materials. Phys Chem Chem Phys 13:1002–1011CrossRef
    46.Shahsavari, R., 2011, Hierarchical Modeling of Structure and Mechanics of Cement Hydrate: PhD thesis of Massachusetts Institute of Technology
    47.Shahsavari R, Buechler MJ, Pellenq RJM, Ulm FJ (2009) First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: case study of tobermorite and jennite. J Am Ceram Soc 92(92):2323–2330CrossRef
    48.Thomas JJ, Jennings HM, Allen AJ (2010) Relationships between composition and density of tobermorite, jennite, and nanoscale CaO–SiO2–H2O. J Phys Chem 114:7594–7601
    49.Thomas TC (1963) Tensile bond strength between aggregate and cement paste or mortar. ACI J Proc 60:465–486
    50.van Duin ACT, Strachan A, Stewman S, Zhang Q, Xu X, Goddard WA (2003) ReaxFFsio Reactive Force Field for Silicon and Silicon Oxide Systems. J Phys Chem A 107:3803–3811CrossRef
    51.Wang JW, Kalinichev AG, Kirkpatrick RJ (2004) Molecular modeling of water structure in nano-pores between brucite (001) surfaces. Geochim Cosmochim Acta 68:3351–3365CrossRef
    52.Youssef M, Pellenq RJM, Yildiz B (2011) Glassy nature of water in an ultraconfining disordered material: the case of calcium silicate hydrate. J Am Chem Soc 133:2499–2510CrossRef
    53.Zhang S, Lu J, Ravichandran GJ (2002) Shock wave response of a zirconium-based bulk metallic glass and its composite. Appl Phys Lett 80:4522–4524CrossRef
  • 作者单位:Dongshuai Hou (1)
    Jinrui Zhang (2)
    Zongjin Li (2)
    Yu Zhu (3)

    1. Qingdao Technological University (Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone), Qingdao, China
    2. Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
    3. Department of Civil Engineering, Henan Polytechnic University, Jiaozuo, Henan, China
  • 刊物类别:Engineering
  • 刊物主题:Structural Mechanics
    Theoretical and Applied Mechanics
    Mechanical Engineering
    Operating Procedures and Materials Treatment
    Civil Engineering
    Building Materials
  • 出版者:Springer Netherlands
  • ISSN:1871-6873
文摘
Calcium silicate hydrate (C–S–H) gels, the main binding phase of cement paste, determine the mechanical properties of cementitious materials. In order to obtain the cohesive force in C–S–H gel, molecular dynamics was carried out to simulate the uniaxial tension test on C–S–H model along x, y and z direction. Due to the structure and dynamic differences of the layered structure, C–S–H model demonstrates heterogeneous mechanical behavior. The calcium silicate layer, constructed by Ca–O and Si–O ionic-covalent bonds, has stronger cohesive force than that of interlayer H-bond network. In addition, composition influence on mechanical performance has been investigated by variation of the Ca/Si ratio. High calcium content, de-polymerizing the silicate chain structure in C–S–H gel, weakens uniaxial tension strength and elastic modulus in three directions. More water molecules penetration into the defective silicate region further reduces the mechanical properties of C–S–H gel at high Ca/Si ratio. Composition analysis at nano-scale can provide molecular insights on the cementitious materials design with different Ca/Si ratios.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700