用户名: 密码: 验证码:
Cross-linking of carboxyl-terminated nitrile rubber with polyhedral oligomeric silsesquioxane
详细信息    查看全文
  • 作者:Raneesh Konnola ; C. P. Reghunadhan Nair…
  • 关键词:Polyhedral oligomeric silsesquioxane ; Carboxyl ; terminated poly(acrylonitrile ; co ; butadiene) ; Cure kinetics ; DSC
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:123
  • 期:2
  • 页码:1479-1489
  • 全文大小:1,849 KB
  • 参考文献:1.Markovic E, Constantopolous K, Matisons J. Polyhedral oligomeric silsesquioxanes: from early and strategic development through to materials application. In: Hartmann-Thompson C, editor. Applications of polyhedral oligomeric silsesquioxanes. Advances in silicon science. Netherlands: Springer; 2011. p. 1–46.CrossRef
    2.Schwab JJ, Lichtenhan JD. Polyhedral oligomeric silsesquioxane(POSS)-based polymers. Appl Organomet Chem. 1998;12(10–11):707–13. doi:10.​1002/​(sici)1099-0739(199810/​11)12:​10/​11<707:​aid-aoc776>3.​0.​co;2-1 .CrossRef
    3.Laine RM, Roll MF. Polyhedral phenylsilsesquioxanes. Macromolecules. 2011;44(5):1073–109.CrossRef
    4.Liu Q, Ren W, Zhang Y, Zhang Y-X. Hydrogenated carboxylated nitrile rubber/modified zinc carbonate basic composites with photoluminescence properties. Eur Polym J. 2011;47(5):1135–41.CrossRef
    5.Varghese T, Muthiah R, David J, Kurian A, Athithan S, Krishnamurthy V, et al. Studies on composite extrudable propellant with varied burning rate pressure Index’n’. Defence Sci J. 2013;39(1):1–12.CrossRef
    6.Wang Y, Wang C, Yin H, Wang L, Xie H, Cheng R. Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: thermal and mechanical properties. Express Polym Lett. 2012;6(9):719–728.
    7.Kuo S-W, Chang F-C. POSS related polymer nanocomposites. Prog Polym Sci. 2011;36(12):1649–96.CrossRef
    8.Lee Y-J, Kuo S-W, Huang C-F, Chang F-C. Synthesis and characterization of polybenzoxazine networks nanocomposites containing multifunctional polyhedral oligomeric silsesquioxane (POSS). Polymer. 2006;47(12):4378–86.CrossRef
    9.Liu Q, Ren W, Zhang Y, Zhang Y. Curing reactions and properties of organic–inorganic composites from hydrogenated carboxylated nitrile rubber and epoxycyclohexyl polyhedral oligomeric silsesquioxanes. Polym Int. 2011;60(3):422–9.CrossRef
    10.Liu Q, Ren W, Zhang Y, Zhang Y. A study on the curing kinetics of epoxycyclohexyl polyhedral oligomeric silsesquioxanes and hydrogenated carboxylated nitrile rubber by dynamic differential scanning calorimetry. J Appl Polym Sci. 2012;123(5):3128–36.CrossRef
    11.Brown ME, Dollimore D, Galwey AK. Reactions in the solid state. Amsterdam: Elsevier; 1980.
    12.Murias P, Byczyński Ł, Maciejewski H, Galina H. A quantitative approach to dynamic and isothermal curing of an epoxy resin modified with oligomeric siloxanes. J Therm Anal Calorim. 2015. doi:10.​1007/​s10973-015-4703-0 .
    13.Tripathi M, Kumar D, Rajagopal C, Roy PK. Curing kinetics of self-healing epoxy thermosets. J Therm Anal Calorim. 2015;119(1):547–55.CrossRef
    14.Vyazovkin S, Wight C. Kinetics in solids. Annu Rev Phys Chem. 1997;48(1):125–49.CrossRef
    15.Janković B. Kinetic analysis of the nonisothermal decomposition of potassium metabisulfite using the model-fitting and isoconversional (model-free) methods. Chem Eng J. 2008;139(1):128–35.CrossRef
    16.Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim Acta. 1992;203:159–65.CrossRef
    17.Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci B. 1969;7(1):41–6. doi:10.​1002/​pol.​1969.​110070109 .CrossRef
    18.Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.CrossRef
    19.Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70(6):487–523.CrossRef
    20.Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22(2):178–83.CrossRef
    21.Liu YL, Chang GP, Hsu KY, Chang FC. Epoxy/polyhedral oligomeric silsesquioxane nanocomposites from octakis (glycidyldimethylsiloxy) octasilsesquioxane and small-molecule curing agents. J Polym Sci, Part A: Polym Chem. 2006;44(12):3825–35.CrossRef
    22.Ramírez C, Rico M, Torres A, Barral L, López J, Montero B. Epoxy/POSS organic–inorganic hybrids: ATR-FTIR and DSC studies. Eur Polym J. 2008;44(10):3035–45.CrossRef
    23.Konnola R, Parameswaranpillai J, Joseph K. Mechanical, thermal, and viscoelastic response of novel in situ CTBN/POSS/epoxy hybrid composite system. Polym Compos. 2015;. doi:10.​1002/​pc.​23390 .
    24.Deng Y, Martin GC. Diffusion and diffusion-controlled kinetics during epoxy-amine cure. Macromolecules. 1994;27(18):5147–53.CrossRef
    25.Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340:53–68.CrossRef
    26.Zhang C, Liu X, Cheng J, Zhang J. Study on curing kinetics of diglycidyl 1, 2-cyclohexane dicarboxylate epoxy/episulfide resin system with hexahydro-4-methylphthalic anhydride as a curing agent. J Therm Anal Calorim. 2015;120(3):1893–903.CrossRef
    27.Bai Y, Yang P, Zhang S, Li Y, Gu Y. Curing kinetics of phenolphthalein–aniline-based benzoxazine investigated by non-isothermal differential scanning calorimetry. J Therm Anal Calorim. 2015;120(3):1755–64.CrossRef
    28.Kasemsiri P, Neramittagapong A, Chindaprasirt P. Curing kinetic, thermal and adhesive properties of epoxy resin cured with cashew nut shell liquid. Thermochim Acta. 2015;600:20–7.CrossRef
    29.Xiong X, Ren R, Liu S, Lu S, Chen P. The curing kinetics and thermal properties of epoxy resins cured by aromatic diamine with hetero-cyclic side chain structure. Thermochim Acta. 2014;595:22–7.CrossRef
    30.Zabihi O, Aghaie M, Zare K. Study on a novel thermoset nanocomposite form DGEBA–cycloaliphatic diamine and metal nanoparticles. J Therm Anal Calorim. 2013;111(1):703–10.CrossRef
    31.Fernandez B, Corcuera M, Marieta C, Mondragon I. Rheokinetic variations during curing of a tetrafunctional epoxy resin modified with two thermoplastics. Eur Polym J. 2001;37(9):1863–9.CrossRef
    32.Núñez L, Taboada J, Fraga F, Núñez M. Kinetic study and time-temperature-transformation cure diagram for an epoxy-diamine system. J Appl Polym Sci. 1997;66(7):1377–88.CrossRef
    33.Auad ML, Nutt SR, Stefani PM, Aranguren MI. Rheological study of the curing kinetics of epoxy–phenol novolac resin. J Appl Polym Sci. 2006;102(5):4430–9.CrossRef
    34.Zlatanic A, Dunjic B. Rheological study of the copolymerization reaction of acrylate-terminated unsaturated copolyesters with styrene. Macromol Chem Phys. 1999;200(9):2048–58.CrossRef
    35.Santhosh Kumar K, Nair CR, Ninan K. Rheokinetic investigations on the thermal polymerization of benzoxazine monomer. Thermochim Acta. 2006;441(2):150–5.CrossRef
    36.Flory PJ. Principles of polymer chemistry. Ithaca: Cornell University Press; 1953.
  • 作者单位:Raneesh Konnola (1)
    C. P. Reghunadhan Nair (2)
    Kuruvilla Joseph (1)

    1. Department of Chemistry, Indian Institute of Space Science and Technology, Thiruvananthapuram, Kerala, 695547, India
    2. Polymers and Special Chemicals Group, Vikram Sarabhai Space Centre, Thiruvananthapuram, Kerala, 695 022, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
Glycidyl polyhedral oligomeric silsesquioxane (POSS) was used as a cross-linking agent to prepare a new organic–inorganic hybrid material from carboxyl-terminated poly(acrylonitrile-co-butadiene) (CTBN). The structure of the reacted material was characterized by Fourier transform infrared spectroscopy. Differential scanning calorimetry (DSC) at different heating rates in the presence and absence of catalyst, triphenyl phosphine (TPP), was conducted to investigate the curing kinetics. The reaction is catalyzed by the addition of TPP, and rate is maximum at higher catalyst concentrations. Different kinetic models were used to analyze the kinetic parameters. The effect of catalyst on curing process was determined by calculating the activation energy (E a) using Kissinger method. Dependency of E a with extent of conversion was monitored by different isoconversional methods. The curing mechanism of POSS–CTBN system followed autocatalytic model. Moreover, the predicted curves from the kinetic models fit well with the non-isothermal DSC curve. The E a of gelation obtained from rheological studies matched with that from DSC study, in league with the Flory’s theory of cross-linking. Keywords Polyhedral oligomeric silsesquioxane Carboxyl-terminated poly(acrylonitrile-co-butadiene) Cure kinetics DSC

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700