Multiple solutions to a magnetic nonlinear Choquard equation
详细信息    查看全文
  • 作者:Silvia Cingolani (1)
    Mónica Clapp (2)
    Simone Secchi (3)
  • 关键词:35Q55 ; 35Q40 ; 35J20 ; 35B06 ; Nonlinear Choquard equation ; Nonlocal nonlinearity ; Electromagnetic potential ; Multiple solutions ; Intertwining solutions
  • 刊名:Zeitschrift f眉r angewandte Mathematik und Physik
  • 出版年:2012
  • 出版时间:April 2012
  • 年:2012
  • 卷:63
  • 期:2
  • 页码:233-248
  • 全文大小:305KB
  • 参考文献:1. Ackermann N.: On a periodic Schr?dinger equation with nonlocal superlinear part. Math. Z. 248, 423-43 (2004) CrossRef
    2. Ambrosetti A., Rabinowitz P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349-81 (1973) CrossRef
    3. Cingolani S., Clapp M.: Intertwining semiclassical bound states to a nonlinear magnetic equation. Nonlinearity 22, 2309-331 (2009) CrossRef
    4. Cingolani, S., Clapp, M., Secchi, S.: Intertwining semiclassical solutions to a Schr?dinger-Newton system, preprint
    5. Cingolani S., Secchi S., Squassina M.: Semiclassical limit for Schr?dinger equations with magnetic field and Hartree-type nonlinearities. Proc. Roy. Soc. Edinburgh 140 A, 973-009 (2010) CrossRef
    6. Clapp M., Puppe D.: Critical point theory with symmetries. J. Reine Angew. Math. 418, 1-9 (1991)
    7. tom Dieck T.: Transformation Groups. Walter de Gruyter, Berlin-New York (1987) CrossRef
    8. Esteban M.J., Lions P.L.: Stationary solutions of nonlinear Schr?dinger equations with an external magnetic field. In: (eds) Partial Differential Equations and the Calculus of Variations, Vol. 1, pp. 401-49. Progr. Nonlinear Differential Equations Appl., 1, Birkh?user Boston, Boston, MA (1989)
    9. Fadell E., Husseini S., Rabinowitz P.H.: Borsuk-Ulam theorems for ${\mathbb{S}^{1} }$ -actions and applications. Trans. Am. Math. Soc. 274, 345-59 (1982)
    10. Fr?hlich, J., Lenzmann, E.: Mean-field limit of quantum Bose gases and nonlinear Hartree equation. In: Séminaire: équations aux Dérivées Partielles 2003-004, Exp. No. XIX, pp. 26. école Polytech., Palaiseau
    11. Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in ${\mathbb{R}^{N} }$ , Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., vol. 7A. pp. 369-02. Academic Press, New York–London
    12. Ginibre J., Velo G.: On a class of nonlinear Schr?dinger equations with nonlocal interaction. Math. Z. 170, 109-36 (1980) CrossRef
    13. Lieb E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93-05 (1977)
    14. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Math. vol. 14. American Mathematical Society, Providence RI (1997)
    15. Lieb E.H., Simon B.: The Hartree-Fock theory for Coulomb systems. Comm. Math. Phys. 53, 185-94 (1977) CrossRef
    16. Lions P.-L.: The Choquard equation and related questions. Nonlinear Anal. TMA 4, 1063-073 (1980) CrossRef
    17. Lions, P.-L.: The concentration-compacteness principle in the calculus of variations. The locally compact case. Ann. Inst. Henry Poincaré, Analyse Non Linéaire vol. 1. pp. 109-45 and 223-83 (1984)
    18. Lions, P.-L.: Symmetries and the concentration-compacteness method. In: Nonlinear Variational Problems, pp. 47-6. Pitman, London, (1985)
    19. Ma L., Zhao L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455-67 (2010) CrossRef
    20. Moroz, I.M., Penrose, R., Tod, P.: Spherically-symmetric solutions of the Schr?dinger-Newton equations. Topology of the Universe Conference (Cleveland, OH, 1997), Classical Quantum Gravity vol. 15. pp. 2733-742 (1998)
    21. Moroz I.M., Tod P.: An analytical approach to the Schr?dinger-Newton equations. Nonlinearity 12, 201-16 (1999) CrossRef
    22. Nolasco M.: Breathing modes for the Schr?dinger–Poisson system with a multiple–well external potential. Commun. Pure Appl. Anal. 9, 1411-419 (2010) CrossRef
    23. Palais R.: The principle of symmetric criticallity. Comm. Math. Phys. 69, 19-0 (1979) CrossRef
    24. Penrose R.: On gravity’s role in quantum state reduction. Gen. Rel. Grav. 28, 581-00 (1996) CrossRef
    25. Penrose R.: Quantum computation, entanglement and state reduction. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 356, 1927-939 (1998) CrossRef
    26. Penrose R.: The Road to Reality. A Complete Guide to the Laws of the Universe. Alfred A. Knopf Inc., New York (2005)
    27. Struwe M.: Variational Methods. Springer, Berlin-Heidelberg (1996)
    28. Secchi S.: A note on Schr?dinger–Newton systems with decaying electric potential. Nonlinear Anal. 72, 3842-856 (2010) CrossRef
    29. Tod P.: The ground state energy of the Schr?dinger-Newton equation. Phys. Lett. A 280, 173-76 (2001) CrossRef
    30. Wei J., Winter M.: Strongly interacting bumps for the Schr?dinger–Newton equation. J. Math. Phys. 50, 012905 (2009) CrossRef
    31. Willem M.: Minimax theorems. PNLDE vol. 24. Birkh?user, Boston-Basel-Berlin (1996) CrossRef
    32. Zhang Z., Küpper T., Hu A., Xia H.: Existence of a nontrivial solution for Choquard’s equation. Acta Math. Sci. Ser. B Engl. Ed. 26, 460-68 (2006)
  • 作者单位:Silvia Cingolani (1)
    Mónica Clapp (2)
    Simone Secchi (3)

    1. Dipartimento di Matematica, Politecnico di Bari, via Orabona 4, 70125, Bari, Italy
    2. Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, C.U., 04510, México D.F., Mexico
    3. Dipartimento di Matematica ed Applicazioni, Università di Milano-Bicocca, via Cozzi 53, 20125, Milano, Italy
  • ISSN:1420-9039
文摘
We consider the stationary nonlinear magnetic Choquard equation $$(- {\rm i}\nabla+ A(x))^{2}u + V (x)u = \left(\frac{1}{|x|^{\alpha}}\ast |u|^{p}\right) |u|^{p-2}u,\quad x\in\mathbb{R}^{N}$$ where A is a real-valued vector potential, V is a real-valued scalar potential, N ?3, ${\alpha \in (0, N)}$ and 2 ?(α/N) <?p <?(2N ?α)/(N?). We assume that both A and V are compatible with the action of some group G of linear isometries of ${\mathbb{R}^{N}}$ . We establish the existence of multiple complex valued solutions to this equation which satisfy the symmetry condition $$u(gx) = \tau(g)u(x)\quad{\rm for\, all }\ g \in G,\;x \in \mathbb{R}^{N},$$ where ${\tau : G \rightarrow \mathbb{S}^{1}}$ is a given group homomorphism into the unit complex numbers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700