Transient Expression of Functional Glucocerebrosidase for Treatment of Gaucher's Disease in the Goat Mammary Gland
详细信息    查看全文
  • 作者:Kaio Cesar Simiano Tavares ; Ana Christina de Oliveira Dias…
  • 关键词:Gaucher disease ; Glucocerebrosidase ; Adenovirus ; Recombinant protein ; Milk ; Glycosylation
  • 刊名:Molecular Biotechnology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:58
  • 期:1
  • 页码:47-55
  • 全文大小:3,739 KB
  • 参考文献:1.Beutler, E., & Grabowski, G. A. (2001). Gaucher disease. In C. R. Scriver, A. L. Beaudet, W. S. Sly, & D. Valle (Eds.), The metabolic and molecular bases of inherited disease (Vol. 3, pp. 3635–3668). New York: McGraw–Hill.
    2.Orvisky, E., Park, J. K., LaMarca, M. E., Ginns, E. I., Martin, B. M., Tayebi, N., & Sidransky, E. (2002). Glucosylsphingosine accumulation in tissues from patients with Gaucher disease: Correlation with phenotype and genotype. Molecular Genetics and Metabolism, 76, 262–270.CrossRef
    3.Rosenbloom, B. E., & Weinreb, N. J. (2013). Gaucher Disease: A Comprehensive Review. Critical Reviews in Oncogenesis, 18, 163–175.CrossRef
    4.Mignot, C., Gelot, A., & De Villemeur, T. B. (2013). Gaucher disease. Handbook of clinical Neurology, 113, 1709–1715.CrossRef
    5.Futerman, A. H., Sussman, J. L., Horowitz, M., Silman, I., & Zimran, A. (2004). New directions in the treatment of Gaucher disease. Trends in Pharmacological Sciences, 25, 147–151.CrossRef
    6.Crystal, R. G. (2014). Adenovirus: The first effective in vivo gene delivery vector. Human Gene Therapy, 25, 3–11.CrossRef
    7.Journal of Gene Medicine (2015). Gene Therapy Clinical Trials Worldwide. www.​wiley.​com/​/​legacy/​wileychi/​genmed/​clinical/​ (Accessed October 2015).
    8.Yang, Y., Nunes, F. A., Berencsi, K., Furth, E. E., Gönczöl, E., & Wilson, J. M. (1994). Cellular immunity to viral antigens limits E1–deleted adenoviruses for gene therapy. Proceedings of the National Academy of Sciences USA, 91, 4407–4411.CrossRef
    9.Luo, J., Deng, Z. L., Luo, X., Tang, N., Song, W. X., Chen, J., et al. (2007). A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nature Protocols, 2, 1236–1247.CrossRef
    10.Yang, J., Tsukamoto, T., Popnikolov, N., Guzman, R. C., Chen, X., Yang, J. H., & Nandi, S. (1995). Adenoviral–mediated gene transfer into primary human and mouse mammary epithelial cells in vitro and in vivo. Cancer Letters, 98, 9–17.CrossRef
    11.Sanchez, O., Toledo, J. R., Rodríguez, M. P., & Castro, F. O. (2004). Adenoviral vector mediates high expression levels of human growth hormone in the milk of mice and goats. Journal of Biotechnology, 114, 89–97.CrossRef
    12.Han, Z., Wu, S., Li, Q., Li, J., Gao, D., Li, K., et al. (2009). Efficient human growth hormone gene expression in the milk of non–transgenic goats. Folia Biologica (Praha), 55, 17–22.
    13.Han, Z. S., Li, Q. W., Zhang, Z. Y., Xiao, B., Gao, D. W., Wu, S. Y., et al. (2007). High-level expression of human lactoferrin in the milk of goats by using replication–defective adenoviral vectors. Protein Expression and Purification, 53, 225–231.CrossRef
    14.Toledo, J. R., Sánchez, O., Montesino Seguí, R., Fernández García, Y., Rodríguez, M. P., & Cremata, J. A. (2005). Differential in vitro and in vivo glycosylation of human erythropoietin expressed in adenovirally transduced mouse mammary epithelial cells. Biochimica et Biophysica Acta, 1726, 48–56.CrossRef
    15.Toledo, J. R., Sánchez, O., Seguí, R. M., García, G., Montañez, M., Zamora, P. A., et al. (2006). High expression level of recombinant human erythropoietin in the milk of non–transgenic goats. Journal of Biotechnology, 123, 225–235.CrossRef
    16.Liu, Z. B., Han, Z. S., Li, Q. W., Yang, H., Lu, W. Z., & Li, W. Y. (2010). Enhanced expression of adenovirus encoding rhEPO assisted by BAPTA. Animal Biotechnology, 21, 164–169.CrossRef
    17.Han, Z. S., Li, Q. W., Zhang, Z. Y., Yu, Y. S., Xiao, B., Wu, S. Y., et al. (2008). Adenoviral vector mediates high expression levels of human lactoferrin in the milk of rabbits. Journal of Microbiology and Biotechnology, 18, 153–159.
    18.Xiao, B., Li, Q. W., Feng, B., Han, Z. S., Gao, W., Li, J., et al. (2008). High–level expression of recombinant human nerve growth factor beta in milk of nontransgenic rabbits. Journal of Bioscience and Bioengineering, 105, 327–334.CrossRef
    19.Xiao, B., Li, Q., Feng, B., Han, Z., Gao, D., Zhao, R., et al. (2009). Expression of recombinant human nerve growth factor beta in milk of goats by recombinant replication-defective adenovirus. Applied Biochemistry and Biotechnology, 157, 357–366.CrossRef
    20.Toledo, J. R., Sanchez, O., Montesino, R., Farnos, O., Rodríguez, M. P., Alfonso, P., et al. (2008). Highly protective E2–CSFV vaccine candidate produced in the mammary gland of adenoviral transduced goats. Journal of Biotechnology, 133, 370–376.CrossRef
    21.Sanchez, O., Barrera, M., Farnós, O., Parra, N. C., Salgado, E. R., Saavedra, P. A., et al. (2014). Effectiveness of the E2-classical swine fever virus recombinant vaccine produced and formulated within whey from genetically transformed goats. Clinical and Vaccine Immunology, 21, 1628–1634.CrossRef
    22.Yang, H., Li, Q. W., Han, Z. S., Hu, J. H., Li, W. Y., & Liu, Z. B. (2009). Recombinant human antithrombin expressed in the milk of non–transgenic goats exhibits high efficiency on rat DIC model. Journal of Thrombosis and Thrombolysis, 28, 449–457.CrossRef
    23.Yang, H., Li, Q., Han, Z., & Hu, J. (2012). High level expression of recombinant human antithrombin in the mammary gland of rabbits by adenoviral vectors infection. Animal Biotechnology, 23, 89–100.CrossRef
    24.Peters, S. P., Coyle, P., & Glew, R. H. (1976). Differentiation of beta–glucocerebrosidase from beta–glucosidase in human tissues using sodium taurocholate. Archives of Biochemistry and Biophysics, 175, 569–582.CrossRef
    25.Huynh, H. T., Robitaille, G., & Turner, J. D. (1991). Establishment of bovine mammary epithelial cells (MAC–T): an in vitro model for bovine lactation. Experimental Cell Research, 197, 191–199.CrossRef
    26.Abramoff, M. D., Magalhaes, P. J., & Ram, S. J. (2004). Image Processing with ImageJ. Biophotonics International, 11, 36–42.
    27.Shevchenko, A., Wilm, M., Vorm, O., & Mann, M. (1996). Mass spectrometric sequencing of proteins silver–stained polyacrylamide gels. Analytical Chemistry, 68, 850–858.CrossRef
    28.Carvalho, P. C., Fischer, J. S. G., Yates, J. R. and Barbosa, V. C. (2012) PatternLab: from mass spectra to label–free differential shotgun proteomics. Current Protocols in Bioinformatics. Chapter 13L Unit 13.19.
    29.Eng, J. K., Jahan, T. A., & Hoopmann, M. R. (2013). Comet: An open–source MS/MS sequence database search tool. Proteomics, 13, 22–24.CrossRef
    30.Dinur, T., Grabowski, G. A., Desnick, R. J., & Gatt, S. (1984). Synthesis of a fluorescent derivative of glucosyl ceramide for the sensitive determination of glucocerebrosidase activity. Analytical Biochemistry, 136, 223–234.CrossRef
    31.Barranger, J. A., & Ginns, E. I. (1989). Glucosylceramide lipidoses: Gaucher’s disease. In C. R. Scriver, A. L. Beaudet, S. W. Sly, & D. Valle (Eds.), The metabolic basis of inherited disease (pp. 1677–1698). New York: McGraw–Hill.
    32.Bergmann, J. E., & Grabowski, G. A. (1989). Posttranslational processing of human lysosomal acid beta-glucosidase: a continuum of defects in Gaucher disease type 1 and type 2 fibroblasts. American Journal of Human Genetics, 44, 741–750.
    33.Fabrega, S., Durand, P., Codogno, P., Bauvy, C., Delomenie, C., Henrissat, B., et al. (2000). Human glucocerebrosidase: heterologous expression of active site mutants in murine null cells. Glycobiology, 10, 1217–1224.CrossRef
    34.Novo, J. B., Morganti, L., Moro, A. M., Paes Leme, A. F., Serrano, S. M., Raw, I., & Ho, P. L. (2012). Generation of a Chinese hamster ovary cell line producing recombinant human glucocerebrosidase. Journal of Biomedicine and Biotechnology, 2012, 875383.CrossRef
    35.Rajala-Schultz, P. J., Gröhn, Y. T., McCulloch, C. E., & Guard, C. L. (1999). Effects of clinical mastitis on milk yield in dairy cows. Journal of Dairy Science, 82, 1213–1220.CrossRef
    36.Wellenberg, G. J., van der Poel, W. H., & Van Oirschot, J. T. (2002). Viral infections and bovine mastitis: a review. Veterinary Microbiology, 88, 27–45.CrossRef
    37.Grabowski, G. A. (2006). Delivery of lysosomal enzymes for therapeutic use: glucocerebrosidase as an example. Expert opinion on drug delivery, 3, 771–782.CrossRef
    38.Friedman, B., Vaddi, K., Preston, C., Mahon, E., Cataldo, J. R., & McPherson, J. M. (1999). A comparison of the pharmacological properties of carbohydrate remodeled recombinant and placental–derived beta–glucocerebrosidase: implications for clinical efficacy in treatment of Gaucher disease. Blood, 93, 2807–2816.
    39.Van Berkel, P. H., Welling, M. M., Geerts, M., van Veen, H. A., Ravensbergen, B., Salaheddine, M., et al. (2002). Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nature Biotechnology, 20, 484–487.CrossRef
    40.Edmunds, T., Van Patten, S. M., Pollock, J., Hanson, E., Bernasconi, R., Higgins, E., et al. (1998). Transgenically produced human antithrombin: structural and functional comparison to human plasma–derived antithrombin. Blood, 91, 4561–4571.
    41.Koles, K., van Berkel, P. H., Pieper, F. R., Nuijens, J. H., Mannesse, M. L., Vliegenthart, J. F., & Kamerling, J. P. (2004). N- and O-glycans of recombinant human C1 inhibitor expressed in the milk of transgenic rabbits. Glycobiology, 14, 51–64.CrossRef
  • 作者单位:Kaio Cesar Simiano Tavares (1)
    Ana Christina de Oliveira Dias (2)
    Cícera Regina Lazzarotto (1)
    Saul Gaudencio Neto (1)
    Igor de Sá Carneiro (1)
    Felipe Ledur Ongaratto (1)
    Antônio Frederico Michel Pinto (2)
    Luís Henrique de Aguiar (1)
    Carlos Enrique Mendez Calderón (1)
    Jorge Roberto Toledo (3)
    Fidel Ovidio Castro (4)
    Diogenes Santiago Santos (2)
    Jocelei Maria Chies (2)
    Marcelo Bertolini (1) (5)
    Luciana Relly Bertolini (1) (6)

    1. Molecular and Development Biology Laboratory, Experimental Biology Center, University of Fortaleza (UNIFOR), Fortaleza, CE, Brazil
    2. Quatro G Pesquisa & Desenvolvimento Ltda., Tecnopuc, Porto Alegre, RS, Brazil
    3. Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción (Udec), Concepción, Chile
    4. Department of Physiopathology, Faculty of Veterinary Sciences, Universidad de Concepción (Udec), Chillán, Chile
    5. School of Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
    6. Biotechnology and Genetic Engineering Lab, School of Pharmacy, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
  • 刊物主题:Biotechnology; Biochemistry, general; Cell Biology; Protein Science; Biological Techniques; Human Genetics;
  • 出版者:Springer US
  • ISSN:1559-0305
文摘
Gaucher disease (GD) is an orphan disease characterized by the lack or incapacity of glucocerebrosidase (hGCase) to properly process glucosylceramide, resulting in its accumulation in vital structures of the human body. Enzyme replacement therapy supplies hGCase to GD patients with a high-cost recombinant enzyme produced in vitro in mammalian or plant cell culture. In this study, we produced hGCase through the direct injection of recombinant adenovirus in the mammary gland of a non-transgenic goat. The enzyme was secreted in the milk during six days at a level up to 111.1 ± 8.1 mg/L, as identified by mass spectrometry, showing high in vitro activity. The milk-produced hGCase presented a mass correspondent to the intermediary high-mannose glycosylated protein, which could facilitate its delivery to macrophages through the macrophage mannose receptor. Further studies are underway to determine the in vivo delivery capacity of milk-hGCase, but results from this study paves the way toward the generation of transgenic goats constitutively expressing hGCase in the milk.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700