Wounding of Arabidopsis halleri leaves enhances cadmium accumulation that acts as a defense against herbivory
详细信息    查看全文
  • 作者:Sonia Plaza ; Johann Weber ; Simone Pajonk ; Jér?me Thomas ; Ina N. Talke…
  • 关键词:Cadmium (Cd) ; Metal hyperaccumulator plant ; Iron (Fe) ; Jasmonate ; Insect herbivory ; Pieris rapae ; Chemical ecology ; Elemental defence ; Phytoremediation
  • 刊名:Biometals
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:28
  • 期:3
  • 页码:521-528
  • 全文大小:536 KB
  • 参考文献:Arrivault S, Senger T, Kr?mer U (2006) The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J 46:861-79View Article PubMed
    Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81-26
    Becher M, Talke IN, Krall L, Kr?mer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251-68View Article PubMed
    Bovet L et al (2003) Transcript level of AtMRPs after cadmium treatment: induction of AtMRP3. Plant, Cell Environ 26:371-81View Article
    Boyd RS (2007) The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant Soil 293:153-76View Article
    Boyd RS, Martens SN (1992) The raison d’être for metal hyperaccumulation in plants. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, pp 279-89
    Bulgarelli D et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91-5. doi:10.-038/?nature11336 View Article PubMed
    Clemens S, Aarts MG, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92-9. doi:10.-016/?j.?tplants.-012.-8.-03 View Article PubMed
    Colangelo EP, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16:3400-412View Article PubMed Central PubMed
    Dahmani-Muller H, Van Oort F, Gelie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109:231-38View Article PubMed
    Farinati S et al (2009) Proteomic analysis of Arabidopsis halleri shoots in response to the heavy metals cadmium and zinc and rhizosphere microorganisms. Proteomics 9:4837-850. doi:10.-002/?pmic.-00900036 View Article PubMed
    Farinati S, DalCrso G, Panigati M, Furini A (2011) Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation. J Exp Bot 62:3433-447. doi:10.-093/?jxb/?err015 View Article PubMed Central PubMed
    Gong Q, Li P, Ma S, Indu Rupassara S, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826-39View Article PubMed
    Gravot A, Lieutaud A, Verret F, Auroy P, Vavasseur A, Richaud P (2004) AtHMA3, a plant P(1B)-ATPase, functions as a Cd/Pb transporter in yeast. FEBS Lett 561:22-8View Article PubMed
    Hanikenne M et al (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391-95View Article PubMed
    Hilson P et al (2004) Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications. Genome Res 14:2176-189View Article PubMed Central PubMed
    Horton MW et al (2014) Genome-wide association study of Arabidopsis thaliana leaf microbial community Nat Commun 5:5320. doi:10.-038/?ncomms6320 View Article PubMed Central PubMed
    Kazemi-Dinan A, Thomaschky S, Stein RJ, Kr?mer U, Müller C (2014) Zinc and cadmium hyperaccumulation act as deterrents towards specialist herbivores and impede the performance of a generalist herbivore. New Phytol 202:628-39. doi:10.-111/?nph.-2663 View Article PubMed
    Kilian J et al (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347-63View Article PubMed
    Kr?mer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517-34View Article PubMed
    Lundberg DS et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86-0. doi:10.-038/?nature11237 View Article PubMed Central PubMed
    Massonneau A, Langlade N, Leon S, Smutny J, Vogt E, Neumann G, Martinoia E (2001) Metabolic changes associated with cluster root development in white lupin (Lupinus albus L.): relationship between organic acid excretion, sucrose metabolism and energy status. Planta 213:534-42View Article PubMed
    Maurer F, Muller S, Bauer P (2011) Suppression of Fe deficiency gene expression by jasmonate. Plant Physiol Biochem 49:530-36. doi:10.-016/?j.?plaphy.-011.-1.-25 View Article PubMed
    Mithofer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431-50. doi:10.-146/?annurev-arplant-042110-103854 View Article PubMed
    Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase Allowing Cd/Zn/Co/Pb Vacuolar Storage
  • 作者单位:Sonia Plaza (1) (4)
    Johann Weber (2)
    Simone Pajonk (3)
    Jér?me Thomas (2)
    Ina N. Talke (3) (5)
    Maja Schellenberg (1)
    Sylvain Pradervand (2)
    Bo Burla (1) (6)
    Markus Geisler (1) (7)
    Enrico Martinoia (1)
    Ute Kr?mer (3)

    1. Institute of Plant Biology, University of Zurich, 8008, Zurich, Switzerland
    4. Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
    2. Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
    3. Department of Plant Physiology, Ruhr University Bochum, Universitaetsstrasse 150 ND3/30, 44801, Bochum, Germany
    5. Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
    6. University Hospital Zurich, University of Zurich, 8006, Zurich, Switzerland
    7. Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Physical Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1572-8773
文摘
Approximately 0.2?% of all angiosperms are classified as metal hyperaccumulators based on their extraordinarily high leaf metal contents, for example >1?% zinc, >0.1?% nickel or >0.01?% cadmium (Cd) in dry biomass. So far, metal hyperaccumulation has been considered to be a taxon-wide, constitutively expressed trait, the extent of which depends solely on available metal concentrations in the soil. Here we show that in the facultative metallophyte Arabidopsis halleri, both insect herbivory and mechanical wounding of leaves trigger an increase specifically in leaf Cd accumulation. Moreover, the Cd concentrations accumulated in leaves can serve as an elemental defense against herbivory by larvae of the Brassicaceae specialist small white (Pieris rapae), thus allowing the plant to take advantage of this non-essential trace element and toxin. Metal homeostasis genes are overrepresented in the systemic transcriptional response of roots to the wounding of leaves in A. halleri, supporting that leaf Cd accumulation is preceded by systemic signaling events. A similar, but quantitatively less pronounced transcriptional response was observed in A. thaliana, suggesting that the systemically regulated modulation of metal homeostasis in response to leaf wounding also occurs in non-hyperaccumulator plants. This is the first report of an environmental stimulus influencing metal hyperaccumulation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700