Osteoporotic Fracture Models
详细信息    查看全文
  • 作者:A. Hamish Simpson (1)
    Iain R. Murray (1)
  • 关键词:Osteoporosis ; Fracture healing ; Animal model
  • 刊名:Current Osteoporosis Reports
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:13
  • 期:1
  • 页码:9-15
  • 全文大小:260 KB
  • 参考文献:1. Davidson MK, Lindsey JR, Davis JK. Requirements and selection of an animal model. Isr J Med Sci. 1987;23(6):551鈥?.
    2. Simon LS. Osteoporosis. Rheum Dis Clin North Am. 2007;33(1):149鈥?6. doi:10.1016/j.rdc.2006.12.005 . CrossRef
    3. Gehron Robey P. The biochemistry of bone. Endocrinol Metab Clin North Am. 1989;18(4):858鈥?02.
    4. Riggs BL, Melton 3rd LJ. Involutional osteoporosis. N Engl J Med. 1986;314(26):1676鈥?6. doi:10.1056/nejm198606263142605 . CrossRef
    5. Prior JC, Vigna YM, Schechter MT, Burgess AE. Spinal bone loss and ovulatory disturbances. N Engl J Med. 1990;323(18):1221鈥?. doi:10.1056/nejm199011013231801 . CrossRef
    6. Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med. 1995;332(5):305鈥?1. doi:10.1056/nejm199502023320506 . CrossRef
    7. Garnero P, Sornay-Rendu E, Claustrat B, Delmas PD. Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J Bone Miner Res. 2000;15(8):1526鈥?6. doi:10.1359/jbmr.2000.15.8.1526 . CrossRef
    8. Whyte MP, Bergfeld MA, Murphy WA, Avioli LV, Teitelbaum SL. Postmenopausal osteoporosis. A heterogeneous disorder as assessed by histomorphometric analysis of iliac crest bone from untreated patients. Am J Med. 1982;72(2):193鈥?02. CrossRef
    9. Riggs BL, Melton 3rd LJ. The prevention and treatment of osteoporosis. N Engl J Med. 1992;327(9):620鈥?. doi:10.1056/nejm199208273270908 . CrossRef
    10. Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest. 1983;72(4):1396鈥?09. doi:10.1172/jci111096 . CrossRef
    11. Egermann M, Goldhahn J, Schneider E. Animal models for fracture treatment in osteoporosis. Osteoporos Int. 2005;16 Suppl 2:S129鈥?8. doi:10.1007/s00198-005-1859-7 . CrossRef
    12. Jacenko O, Olsen BR. Transgenic mouse models in studies of skeletal disorders. J Rheumatol Suppl. 1995;43:39鈥?1.
    13. Houdebine LM. Transgenic animal models in biomedical research. Methods Mol Biol. 2007;360:163鈥?02. doi:10.1385/1-59745-165-7:163 .
    14. Holstein JH, Garcia P, Histing T, Kristen A, Scheuer C, Menger MD, et al. Advances in the establishment of defined mouse models for the study of fracture healing and bone regeneration. J Orthop Trauma. 2009;23(5 Suppl):S31鈥?. doi:10.1097/BOT.0b013e31819f27e5 . CrossRef
    15. Mills LA, Simpson AH. In vivo models of bone repair. J Bone Joint Surg Br. 2012;94(7):865鈥?4. doi:10.1302/0301-620x.94b7.27370 . / Up to date review outlining clinical scenarios of fracture healing and the available animal models that best reflect them. CrossRef
    16. Nunamaker DM. Experimental models of fracture repair. Clin Orthop Relat Res. 1998;355 Suppl:S56鈥?5. CrossRef
    17. Okamoto Y, Takahashi K, Toriyama K, Takeda N, Kitagawa K, Hosokawa M, et al. Femoral peak bone mass and osteoclast number in an animal model of age-related spontaneous osteopenia. Anat Rec. 1995;242(1):21鈥?. doi:10.1002/ar.1092420104 . CrossRef
    18. Silva MJ, Brodt MD, Ettner SL. Long bones from the senescence accelerated mouse SAMP6 have increased size but reduced whole-bone strength and resistance to fracture. J Bone Miner Res. 2002;17(9):1597鈥?03. doi:10.1359/jbmr.2002.17.9.1597 . CrossRef
    19. Kajkenova O, Lecka-Czernik B, Gubrij I, Hauser SP, Takahashi K, Parfitt AM, et al. Increased adipogenesis and myelopoiesis in the bone marrow of SAMP6, a murine model of defective osteoblastogenesis and low turnover osteopenia. J Bone Miner Res. 1997;12(11):1772鈥?. doi:10.1359/jbmr.1997.12.11.1772 . CrossRef
    20. Syed FA, Hoey KA. Integrative physiology of the aging bone: insights from animal and cellular models. Ann N Y Acad Sci. 2010;1211:95鈥?06. doi:10.1111/j.1749-6632.2010.05813.x . CrossRef
    21. Histing T, Stenger D, Kuntz S, Scheuer C, Tami A, Garcia P, et al. Increased osteoblast and osteoclast activity in female senescence-accelerated, osteoporotic SAMP6 mice during fracture healing. J Surg Res. 2012;175(2):271鈥?. doi:10.1016/j.jss.2011.03.052 . CrossRef
    22. Histing T, Kuntz S, Stenger D, Scheuer C, Garcia P, Holstein JH, et al. Delayed fracture healing in aged senescence-accelerated P6 mice. J Invest Surg. 2013;26(1):30鈥?. doi:10.3109/08941939.2012.687435 . / Study of closed femoral fracture healing in senescence accelerated osteoporotic mice (SAMP6). Fracture healing was delayed in osteoporotic mice aged 10聽months. CrossRef
    23. Egermann M, Heil P, Tami A, Ito K, Janicki P, Von Rechenberg B, et al. Influence of defective bone marrow osteogenesis on fracture repair in an experimental model of senile osteoporosis. J Orthop Res. 2010;28(6):798鈥?04. doi:10.1002/jor.21041 .
    24. Ding WG, Zhang ZM, Zhang YH, Jiang SD, Jiang LS, Dai LY. Changes of substance P during fracture healing in ovariectomized mice. Regul Pept. 2010;159(1鈥?):28鈥?4. doi:10.1016/j.regpep.2009.11.004 . CrossRef
    25. Li M, Healy DR, Li Y, Simmons HA, Crawford DT, Ke HZ, et al. Osteopenia and impaired fracture healing in aged EP4 receptor knockout mice. Bone. 2005;37(1):46鈥?4. doi:10.1016/j.bone.2005.03.016 . CrossRef
    26. Kubo T, Shiga T, Hashimoto J, Yoshioka M, Honjo H, Urabe M, et al. Osteoporosis influences the late period of fracture healing in a rat model prepared by ovariectomy and low calcium diet. J Steroid Biochem Mol Biol. 1999;68(5鈥?):197鈥?02. CrossRef
    27. Perkins SL, Gibbons R, Kling S, Kahn AJ. Age-related bone loss in mice is associated with an increased osteoclast progenitor pool. Bone. 1994;15(1):65鈥?2. CrossRef
    28. Cao J, Venton L, Sakata T, Halloran BP. Expression of RANKL and OPG correlates with age-related bone loss in male C57BL/6 mice. J Bone Miner Res. 2003;18(2):270鈥?. doi:10.1359/jbmr.2003.18.2.270 . CrossRef
    29. Ferguson VL, Ayers RA, Bateman TA, Simske SJ. Bone development and age-related bone loss in male C57BL/6J mice. Bone. 2003;33(3):387鈥?8. CrossRef
    30. Bergman RJ, Gazit D, Kahn AJ, Gruber H, McDougall S, Hahn TJ. Age-related changes in osteogenic stem cells in mice. J Bone Miner Res. 1996;11(5):568鈥?7. doi:10.1002/jbmr.5650110504 . CrossRef
    31. Meyer Jr RA, Desai BR, Heiner DE, Fiechtl J, Porter S, Meyer MH. Young, adult, and old rats have similar changes in mRNA expression of many skeletal genes after fracture despite delayed healing with age. J Orthop Res. 2006;24(10):1933鈥?4. doi:10.1002/jor.20124 . CrossRef
    32. D鈥橧ppolito G, Schiller PC, Ricordi C, Roos BA, Howard GA. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res. 1999;14(7):1115鈥?2. doi:10.1359/jbmr.1999.14.7.1115 . CrossRef
    33. Tabensky A, Duan Y, Edmonds J, Seeman E. The contribution of reduced peak accrual of bone and age-related bone loss to osteoporosis at the spine and hip: insights from the daughters of women with vertebral or hip fractures. J Bone Miner Res. 2001;16(6):1101鈥?. doi:10.1359/jbmr.2001.16.6.1101 . CrossRef
    34. Melton 3rd LJ, Beck TJ, Amin S, Khosla S, Achenbach SJ, Oberg AL, et al. Contributions of bone density and structure to fracture risk assessment in men and women. Osteoporos Int. 2005;16(5):460鈥?. doi:10.1007/s00198-004-1820-1 . CrossRef
    35. Watanabe K, Hishiya A. Mouse models of senile osteoporosis. Mol Aspects Med. 2005;26(3):221鈥?1. doi:10.1016/j.mam.2005.01.006 . CrossRef
    36. Oheim R, Beil FT, Kohne T, Wehner T, Barvencik F, Ignatius A, et al. Sheep model for osteoporosis: sustainability and biomechanical relevance of low turnover osteoporosis induced by hypothalamic-pituitary disconnection. J Orthop Res. 2013;31(7):1067鈥?4. doi:10.1002/jor.22327 . / Outlines a novel large animal model of primary type 2 (senile) osteoporosis. Hypothalamic-pituitary dissociation in sheep resulted in a low-turnover form of osteoporosis. CrossRef
    37. Horton WA. Skeletal development: insights from targeting the mouse genome. Lancet. 2003;362(9383):560鈥?. doi:10.1016/s0140-6736(03)14119-0 . CrossRef
    38. Rosen CJ, Beamer WG, Donahue LR. Defining the genetics of osteoporosis: using the mouse to understand man. Osteoporos Int. 2001;12(10):803鈥?0. doi:10.1007/s001980170030 . CrossRef
    39. Abbott A. Laboratory animals: the Renaissance rat. Nature. 2004;428(6982):464鈥?. doi:10.1038/428464a . CrossRef
    40. A M. Fracture healing in osteopenic bone and the influence of simvastatin. Edinburgh: The University of Edinburgh; 2006.
    41. Stuermer EK, Sehmisch S, Rack T, Wenda E, Seidlova-Wuttke D, Tezval M, et al. Estrogen and raloxifene improve metaphyseal fracture healing in the early phase of osteoporosis. A new fracture-healing model at the tibia in rat. Langenbecks Arch Surg. 2010;395(2):163鈥?2. doi:10.1007/s00423-008-0436-x . CrossRef
    42. Hiltunen A, Vuorio E, Aro HT. A standardized experimental fracture in the mouse tibia. J Orthop Res. 1993;11(2):305鈥?2. doi:10.1002/jor.1100110219 . CrossRef
    43. Manigrasso MB, O鈥機onnor JP. Characterization of a closed femur fracture model in mice. J Orthop Trauma. 2004;18(10):687鈥?5. CrossRef
  • 作者单位:A. Hamish Simpson (1)
    Iain R. Murray (1)

    1. Department of Trauma and Orthopaedics, The University of Edinburgh, Chancellors Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
  • 刊物主题:Orthopedics; Epidemiology;
  • 出版者:Springer US
  • ISSN:1544-2241
文摘
Animal models are widely used to investigate the pathogenesis of osteoporosis and for the clinical testing of anti-resorptive drugs. However, osteoporotic fracture models designed to investigate novel ways to treat fractures of osteoporotic bone must fulfil requirements distinct from those of pharmacological testing. Bone strength and toughness, implant fixation and osteointegration and fracture repair are of particular interest. Osteoporotic models should reflect the underlying clinical scenario be that primary type 1 (post-menopausal) osteoporosis, primary type 2 (senile) osteoporosis or secondary osteoporosis. In each scenario, small and large animal models have been developed. While rodent models facilitate the study of fractures in strains specifically established to facilitate understanding of the pathologic basis of disease, concerns remain about the relevance of small animal fracture models to the human situation. There is currently no all-encompassing model, and the choice of species and model must be individualized to the scientific question being addressed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700