Optimization of pulsed current GTAW process parameters for sintered hot forged AISI 4135 P/M steel welds by simulated annealing and genetic algorithm
详细信息    查看全文
  • 作者:Joby Joseph ; S. Muthukumaran
  • 关键词:Genetic algorithm ; Powder metallurgy ; Response surface methodology ; Simulated annealing ; Taguchi ; Tensile strength
  • 刊名:Journal of Mechanical Science and Technology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:30
  • 期:1
  • 页码:145-155
  • 全文大小:8,634 KB
  • 参考文献:[1]R. Goto, Powder metallurgy growth in the automotive market, In: Business briefing: global automotive manufacturing and technology, Materials, London, UK (2003) 44–45.
    [2]W. B. James, West GT. Ferrous powder metallurgy materials, In: Powder metal technologies and applications, ASM handbook, 7 (2002) 751–768.
    [3]C. Selcuk, S. Bond and P. Woollin, Joining processes for powder metallurgy parts: a review, Powder Metall, 53 (1) (2010) 7–11.CrossRef
    [4]K. Jayabharath, M. Ashfaq, P. Venugopal and D. R. G. Achar, Investigations on the continuous drive friction welding of sintered powder metallurgical (P/M) steel and wrought copper parts, Mater. Sci. Eng. A, 454-455 (2007) 114–123.CrossRef
    [5]M. G. Fillabi, A. Simchi and A. H. Kokabi, Effect of iron particle size on the diffusion bonding of Fe-5%Cu powder compact to wrought carbon steels, Mater. Des., 29 (2008) 411–417.CrossRef
    [6]M. V. Suresh, B. Vamsi Krishna, P. Venugopal and K. Prasad Rao, Effect of pulse frequency in gas tungsten arc welding of powder metallurgical preforms, Sci. Technol. Weld. Join., 9 (2004) 362–368.CrossRef
    [7]J. A. Hamill. and P. Wirth, SAE Tech. Paper 940355, SAE International Congress, Detroit, MI, February (1994).
    [8]R. C. Calcraft, M. A. Wahab, D. M. Viano, G. O. Schumann, R. H. Phillips and N. U. Ahmed, The development of welding procedures and the fatigue of butt-welded structures of Aluminium-AA5383, J. Mater. Process. Technol., 92-93 (1999) 60–65.CrossRef
    [9]T. Senthil Kumar, V. Balasubramanian and M. Y. Sanavullah, Influences of Pulsed current tungsten inert gas welding parameters on the tensile properties of AA6061 Aluminium alloy, Mater. Des., 28 (2007) 2080–2092.CrossRef
    [10]S. R. Koteswara Rao, G. Madhusudhan Reddy, M. Kamaraj and K. Prasad Rao, Grain Refinement through Arc Manipulation Techniques in Al-Cu Alloy GTA Welds, Mater. Sci. Eng. A, 404 (2005) 227–234.CrossRef
    [11]K. H. Tseng and C. P. Chou, The effect of pulsed current GTAW in the Residual Stress of a Stainless Steel Weldment, J. Mater. Process. Technol., 123 (2002) 346–353.CrossRef
    [12]A. Kumar and S. Sundarrajan, Effect of welding parameters on mechanical properties and optimization of pulsed tig welding of Al-Mg-Si Alloy, Int. J. Adv. Manuf. Technol., 42 (2009) 118–125.CrossRef
    [13]G. Madusudhan Reddy, A. A. Gokhale and K. Prasad Rao, Weld microstructure refinement in a 1441 grade Al-Lithium alloy, J. Mater. Sci., 32 (1997) 4117–4121.CrossRef
    [14]M. E. Aalami Aleagha and A. M. Rashidi, Correlated macrostructural parameters of weld and weld current in the SMAW of small pipes, J. Mech. Sci. and Tech., 26 (1) (2012) 181–185.CrossRef
    [15]M. Balasubramanian, V. Jayabalan and V. Balasubramanian, Optimizing the pulsed current gas tungsten arc welding parameters, J. Mater. Sci. Tech., 22 (6) (2006) 821.
    [16]G. Padmanaban and V. Balasubramanian, Optimization of pulsed current gas tungsten arc welding process parameters to attain maximum tensile strength in AZ31B magnesium alloy, Trans, Nonferrous Met. Soc. China, 21 (2011) 467–476.CrossRef
    [17]K. Siva Prasad and D. Nageswara Rao, International transaction journal of engineering, Management, & Applied Sciences & Technologies (2012) 87–100.
    [18]S. P. Jung, T. W. Park, K. J. Jun, J. W. Yoon, S. H. Lee and W.-S. Chung, A study on the optimization method for a multi-body system using the response surface analysis, JMST, 23 (2009) 950–953.
    [19]K. Y. Benyounis, A. G. Olabi and M. S. Hashmi, Optimizing the laser-welded butt joints of medium carbon steel using RSM, J. of Materials Processing Technology, 164-165 (2005) 986–989.CrossRef
    [20]M. Balasubramanian, V. Jayabalan and V. Balasubramanian, Response surface approach to optimize the pulsed current gas tungsten arc welding parameters of Ti-6Al-4V Titanium alloy, Metals and Materials International, 13 (4) (2007) 335–344.CrossRef
    [21]R. Sudhakaran, V. Velmurugan, K. M. Senthil Kumar, R. Jayaram, A. Pushparaj and C. Praveen, Optimization of process parameters to minimize angular distortion in gas tungsten arc welded stainless steel 202grade plates using genetic algorithms, Int. J. Engg. Sci. Tech., 2 (2010) 731–748.
    [22]S. Gadewar, P. Swaminadhan and M. Harkare, Experimental Investigations of weld characteristics for a single pass TIG welding with SS304, Int. J. Engg. Sci. Tech., 2 (2010) 3676–3686.
    [23]Y. S. Tarng and W. H. Yang, Optimization of the Weld Bead Geometry in GTA Welding by the Taguchi Method, Int. J. Adv. Manu. Tech., 14 (1998) 549–554.CrossRef
    [24]R. H. Myers and D. H. Montgomery, Response Surface Methodology, Wiley, USA (1995) 705.
    [25]R. Ramakrishnan and R. Arumugam, Optimization of operating parameters and performance evaluation of forced draft cooling tower using response surface methodology (RSM) and artificial neural network (ANN), JMST, 26 (5) (2012) 1643–1650.
    [26]J. H. Holland, Adaptation in natural and artificial system, University of Michigan Press, Ann Arbor, MI (1975) 406.
    [27]D. E. Goldberg, Genetic algorithms in search, optimization and machine learning, Addison-Wesley (1989) 435.
    [28]S. Sette, L. Boullart and L. Langenhove, Optimizing a production process by a neural network/genetic algorithm approach, Eng. Appl. Artif. Intell., 9 (6) (1996) 681–689.CrossRef
    [29]P. G. Busacca, M. Marseguerra and E. Zio, Multi objective optimization by genetic algorithms: application to safety systems, Reliab. Eng. Syst. Safety, 72 (2001) 59–74.CrossRef
    [30]S. Kirkpatrick, C. Gelatt and M. Vecchi, Optimization by simulated annealing, Science, 220 (1983) 671–680.MathSciNet CrossRef MATH
    [31]S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images, IEEETran. Pattern Analysis and Machine Intelligence, 6 (6) (1984) 721–741.CrossRef MATH
    [32]S. Bandyopadhyay, U. Maulik and M. K. Pakhira, Clustering using simulated annealing with probabilistic redistribution, Int. J. Pattern Recognition and Artificial Intelligence, 15 (2) (2001) 269–285.CrossRef
    [33]R. Caves, S. Quegan and R. White, Quantitative comparison of the performance of SAR segmentation algorithms, IEEE Transactions on Image Proc., 7 (11) (1998) 1534–1546.CrossRef
    [34]P. Czyzak and A. Jaszkiewicz, Pareto simulated annealing -a metaheuristic technique for multiple-objective combinatorial optimization, J. Multi-Criteria Decision Analysis, 7 (1998) 34–47.CrossRef MATH
    [35]A. Suppapitnarm, K. A. Seffen, G. T. Parks and P. Clarkson, A simulated annealing algorithm for multiobjective optimization, Engineering Optimization, 33 (2000) 59–85.CrossRef
    [36]D. K. Nam and C. Park, Multiobjective simulated annealing: a comparative study to evolutionary algorithms, Int. J. Fuzzy Systems, 2 (2) (2000) 87–97.
    [37]E. L. Ulungu, J. Teghaem, P. Fortemps and D. Tuyttens, MOSA method: a tool for solving multiobjective combinatorial decision problems, J. Multi-criteria Decision Analysis, 8 (1999) 221–236.CrossRef MATH
    [38]K. S. Pandey, P. S. Misra and M. L. Mehta, Densification behavior of iron powder preforms during hot upsetting, Trans PMAI, 13 (1986) 94–99.
  • 作者单位:Joby Joseph (1)
    S. Muthukumaran (1)

    1. Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, 620015, India
  • 刊物类别:Engineering
  • 刊物主题:Mechanical Engineering
    Structural Mechanics
    Control Engineering
    Industrial and Production Engineering
  • 出版者:The Korean Society of Mechanical Engineers
  • ISSN:1976-3824
文摘
Abundant improvements have occurred in materials handling, especially in metal joining. Pulsed current gas tungsten arc welding (PCGTAW) is one of the consequential fusion techniques. In this work, PCGTAW of AISI 4135 steel engendered through powder metallurgy (P/M) has been executed, and the process parameters have been highlighted applying Taguchi’s L9 orthogonal array. The results show that the peak current (Ip), gas flow rate (GFR), welding speed (WS) and base current (Ib) are the critical constraints in strong determinant of the Tensile strength (TS) as well as percentage of elongation (% Elong) of the joint. The practical impact of applying Genetic algorithm (GA) and Simulated annealing (SA) to PCGTAW process has been authenticated by means of calculating the deviation between predicted and experimental welding process parameters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700