Fully explicit dissipative particle dynamics simulation of electroosmotic flow in nanochannels
详细信息    查看全文
  • 作者:Abouzar Moshfegh ; Ahmad Jabbarzadeh
  • 关键词:Nanochannel flow ; DPD ; Charge cloud ; Electroosmotic pump ; Zeta potential
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:20
  • 期:4
  • 全文大小:4,248 KB
  • 参考文献:Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon, OxfordMATH
    Al-Rjoub MF, Roy AK, Ganguli S, Banerjee RK (2015) Improved flow rate in electro-osmotic micropumps for combinations of substrates and different liquids with and without nanoparticles. J Electron Packag 137:021001CrossRef
    Bagotsky VS (2005) Fundamentals of electrochemistry, vol 44. Wiley, New YorkCrossRef
    Bazant MZ (2008) Nonlinear electrokinetic phenomena. In: Encyclopedia of microfluidics and nanofluidics. Springer, Berlin, pp 1461–1470
    Beckers J, Lowe C, De Leeuw S (1998) An iterative PPPM method for simulating Coulombic systems on distributed memory parallel computers. Mol Simul 20:369–383CrossRef MATH
    Behrens SH, Grier DG (2001) The charge of glass and silica surfaces. J Chem Phys 115:6716–6721. doi:10.​1063/​1.​1404988 CrossRef
    Brant JA, Johnson KM, Childress AE (2006) Examining the electrochemical properties of a nanofiltration membrane with atomic force microscopy. J Membr Sci 276:286–294. doi:10.​1016/​j.​memsci.​2005.​10.​002 CrossRef
    Buie CR et al (2006) Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping. J Power Sources 161:191–202CrossRef
    Butt H-J, Graf K, Kappl M (2006) Physics and chemistry of interfaces. Wiley, New York
    Cao Q, Zuo C, Li L, Yang Y, Li N (2011) Controlling electroosmotic flow by polymer coating: a dissipative particle dynamics study. Microfluid Nanofluid 10:977–990CrossRef
    Chatterjee A (2007) Modification to Lees–Edwards periodic boundary condition for dissipative particle dynamics simulation with high dissipation rates. Mol Simul 33:1233–1236CrossRef
    Chen W, Yuan J-H, Xia X-H (2005) Characterization and manipulation of the electroosmotic flow in porous anodic alumina membranes. Anal Chem 77:8102–8108CrossRef
    Cui ST, Cochran HD (2004) Electroosmotic flow in nanoscale parallel-plate channels: molecular simulation study and comparison with classical Poisson–Boltzmann theory. Mol Simul 30:259–266. doi:10.​1080/​0892702041000165​9367 CrossRef
    Dünweg D, Paul W (1991) Brownian dynamics simulations without Gaussian random numbers. Int J Mod Phys C 02:817–827. doi:10.​1142/​S012918319100103​7 CrossRef
    Duong-Hong D, Phan-Thien N, Fan X (2004) An implementation of no-slip boundary conditions in DPD. Comput Mech 35:24–29CrossRef MATH
    Duong-Hong D, Wang J-S, Liu GR, Chen Y, Han J, Hadjiconstantinou N (2008) Dissipative particle dynamics simulations of electroosmotic flow in nano-fluidic devices. Microfluid Nanofluid 4:219–225. doi:10.​1007/​s10404-007-0170-7 CrossRef
    Español P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. EPL (Europhys Lett) 30:191CrossRef
    Ewald PP (1921) Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys 369:253–287. doi:10.​1002/​andp.​19213690304 CrossRef MATH
    Füchslin RM, Fellermann H, Eriksson A, Ziock H-J (2009) Coarse graining and scaling in dissipative particle dynamics. J Chem Phys 130:214102. doi:10.​1063/​1.​3143976 CrossRef
    Gibbon P, Sutmann G (2002) Long-range interactions in many-particle simulation. In: Grotendorst J, Marx D, Muramatsu A (eds) Quantum simulations of many-body systems: from theory to algorithm NIC-series, vol 10, pp 467–506
    Gibson J, Chen K, Chynoweth S (1999) The equilibrium of a velocity-Verlet type algorithm for DPD with finite time steps. Int J Mod Phys C 10:241–261CrossRef MATH
    González-Melchor M, Mayoral E, Velazquez ME, Alejandre J (2006) Electrostatic interactions in dissipative particle dynamics using the Ewald sums. J Chem Phys 125:224107–224109CrossRef
    Grahame DC (1947) The electrical double layer and the theory of electrocapillarity. Chem Rev 41:441–501. doi:10.​1021/​cr60130a002 CrossRef
    Groot RD (2003) Electrostatic interactions in dissipative particle dynamics—simulation of polyelectrolytes and anionic surfactants. J Chem Phys 118:11265–11277CrossRef
    Groot RD, Rabone KL (2001) Mesoscopic simulation of cell membrane damage morphology change and rupture by nonionic surfactants. Biophys J 81:725–736CrossRef
    Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107:4423–4435CrossRef
    Han J, Craighead HG (2000) Separation of long DNA molecules in a microfabricated entropic trap array. Science 288:1026–1029CrossRef
    Helmholtz HV (1853) About some laws of distribution of electric currents in physical conductors with application to the brutish-electrical experiments. Ann Phys 165:211–233
    Herr AE, Molho JI, Santiago JG, Mungal MG, Kenny TW, Garguilo MG (2000) Electroosmotic capillary flow with nonuniform zeta potential. Anal Chem 72:1053–1057. doi:10.​1021/​ac990489i CrossRef
    Ho C, Qiao R, Heng JB, Chatterjee A, Timp RJ, Aluru NR, Timp G (2005) Electrolytic transport through a synthetic nanometer-diameter pore. Proc Natl Acad Sci USA 102:10445–10450CrossRef
    Hockney RW, Eastwood JW (2010) Computer simulation using particles. CRC Press, Boca RatonMATH
    Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL (Europhys Lett) 19:155CrossRef
    Hu G, Li D (2007) Multiscale phenomena in microfluidics and nanofluidics. Chem Eng Sci 62:3443–3454CrossRef
    Hunter RJ, White LR (1987) Foundations of colloid science. Clarendon Press, Oxford
    Ibergay C, Malfreyt P, Tildesley DJ (2009) Electrostatic interactions in dissipative particle dynamics: toward a mesoscale modeling of the polyelectrolyte brushes. J Chem Theory Comput 5:3245–3259CrossRef
    Iler RK (1979) The chemistry of silica. Wiley, New York
    Jen C-P, Amstislavskaya TG, Liu Y-H, Hsiao J-H, Chen Y-H (2012) Single-cell electric lysis on an electroosmotic-driven microfluidic chip with arrays of microwells. Sensors 12:6967–6977CrossRef
    Karimi G, Li X (2005) Electroosmotic flow through polymer electrolyte membranes in PEM fuel cells. J Power Sources 140:1–11CrossRef
    Karniadakis G, Beskok A, Aluru N (2005) Microflows and nanoflows: fundamentals and simulation (Interdisciplinary Applied Mathematics). Springer, BerlinMATH
    Keaveny EE, Pivkin IV, Maxey M, Karniadakis GE (2005) A comparative study between dissipative particle dynamics and molecular dynamics for simple-and complex-geometry flows. J Chem Phys 123:104107CrossRef
    Kemery PJ, Steehler JK, Bohn PW (1998) Electric field mediated transport in nanometer diameter channels. Langmuir 14:2884–2889. doi:10.​1021/​la980147s CrossRef
    Kielland J (1937) Individual activity coefficients of ions in aqueous solutions. J Am Chem Soc 59:1675–1678CrossRef
    Kirby BJ (2010) Micro-and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge University Press, CambridgeCrossRef MATH
    Kirby BJ, Hasselbrink EF (2004) Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25:187–202CrossRef
    Kumar A, Asako Y, Abu-Nada E, Krafczyk M, Faghri M (2009) From dissipative particle dynamics scales to physical scales: a coarse-graining study for water flow in microchannel. Microfluid Nanofluid 7:467–477CrossRef
    Kuo T-C, Sloan LA, Sweedler JV, Bohn PW (2001) Manipulating molecular transport through nanoporous membranes by control of electrokinetic flow: effect of surface charge density and Debye length. Langmuir 17:6298–6303CrossRef
    Lang PF, Smith BC (2010) Ionic radii for Group 1 and Group 2 halide, hydride, fluoride, oxide, sulfide, selenide and telluride crystals. Dalton Trans 39:7786–7791. doi:10.​1039/​C0DT00401D CrossRef
    Lee S, An R, Hunt AJ (2010) Liquid glass electrodes for nanofluidics. Nat Nanotechnol 5:412–416CrossRef
    Lide DR (2004) CRC handbook of chemistry and physics. CRC Press, Boca Raton
    Liechty BC, Webb BW, Maynes RD (2005) Convective heat transfer characteristics of electro-osmotically generated flow in microtubes at high wall potential. Int J Heat Mass Transf 48:2360–2371. doi:10.​1016/​j.​ijheatmasstransf​er.​2005.​01.​019 CrossRef MATH
    Marsh C, Backx G, Ernst M (1997) Static and dynamic properties of dissipative particle dynamics. Phys Rev E 56:1676CrossRef
    Masoud D, Ramin Z, Gerry S (2010) Dissipative particle dynamics simulation of electroosmotic flow in nanoscale channels. In: 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. Aerospace sciences meetings. American Institute of Aeronautics and Astronautics. doi:10.​2514/​6.​2010-807
    Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comput Simul (TOMACS) 8:3–30CrossRef MATH
    Miao JY, Xu ZL, Zhang XY, Wang N, Yang ZY, Sheng P (2007) Micropumps based on the enhanced electroosmotic effect of aluminum oxide membranes. Adv Mater 19:4234–4237CrossRef
    Miller SA, Young VY, Martin CR (2001) Electroosmotic flow in template-prepared carbon nanotube membranes. J Am Chem Soc 123:12335–12342. doi:10.​1021/​ja011926p CrossRef
    Moshfegh A, Jabbarzadeh A (2015a) Modified Lees–Edwards boundary condition for dissipative particle dynamics: hydrodynamics and temperature at high shear rates. Mol Simul 41(15):1264–1277CrossRef
    Moshfegh A, Jabbarzadeh A (2015b) Dissipative particle dynamics: effects of parameterisation and thermostating schemes on rheology. Soft Mater 13(2):106–117CrossRef
    Ong S, Zhao X, Eisenthal KB (1992) Polarization of water molecules at a charged interface: second harmonic studies of the silica/water interface. Chem Phys Lett 191:327–335CrossRef
    Paul PH, Garguilo MG, Rakestraw DJ (1998) Imaging of pressure- and electrokinetically driven flows through open capillaries. Anal Chem 70:2459–2467. doi:10.​1021/​ac9709662 CrossRef
    Pennathur S, Santiago JG (2005a) Electrokinetic transport in nanochannels. 1. Theory. Anal Chem 77:6772–6781CrossRef
    Pennathur S, Santiago JG (2005b) Electrokinetic transport in nanochannels. 2. Experiments. Anal Chem 77:6782–6789CrossRef
    Probstein RF (1994) Physiochemical hydrodynamics: an introduction, 2nd edn. Wiley, New YorkCrossRef
    Probstein RF (2005) Physicochemical hydrodynamics: an introduction. John Wiley & Sons, New York
    Qiao R (2007) Effects of molecular level surface roughness on electroosmotic flow. Microfluid Nanofluid 3:33–38. doi:10.​1007/​s10404-006-0103-x CrossRef
    Qiao R, Aluru NR (2003) Ion concentrations and velocity profiles in nanochannel electroosmotic flows. J Chem Phys 118:4692–4701CrossRef
    Qiao R, Aluru N (2005) Atomistic simulation of KCl transport in charged silicon nanochannels: interfacial effects. Colloids Surf A 267:103–109CrossRef
    Qiao R, He P (2007) Modulation of electroosmotic flow by neutral polymers. Langmuir 23:5810–5816CrossRef
    Quinn DJ, Pivkin IV, Wong SY, Chiam K-H, Dao M, Karniadakis GE, Suresh S (2011) Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems. Annals of biomedical engineering 39:1041–1050
    Rotenberg B, Pagonabarraga I (2013) Electrokinetics: insights from simulation on the microscopic scale. Mol Phys 111:827–842. doi:10.​1080/​00268976.​2013.​791731 CrossRef
    Sadr R, Yoda M, Zheng Z, Conlisk A (2004) An experimental study of electro-osmotic flow in rectangular microchannels. J Fluid Mech 506:357–367CrossRef MATH
    Santiago JG (2001) Electroosmotic flows in microchannels with finite inertial and pressure forces. Anal Chem 73:2353–2365. doi:10.​1021/​ac0101398 CrossRef
    Seaton MA, Anderson RL, Metz S, Smith W (2013) DL_MESO: highly scalable mesoscale simulations. Mol Simul. doi:10.​1080/​08927022.​2013.​772297
    Shelley JC (1996) Boundary condition effects in simulations of water confined between planar walls. Mol Phys 88:385–398. doi:10.​1080/​0026897965002640​6 CrossRef
    Sheng P, Wang N, Miao J, Yang Z, Yang S, Zhang X (2006) Membrane nanopumps based on porous alumina thin films, membranes therefor and a method of fabricating such membranes. Google Patents
    Sheu TW, Kuo S, Lin R (2012) Prediction of a temperature-dependent electroosmotically driven microchannel flow with the Joule heating effect. Int J Numer Methods Heat Fluid Flow 22:554–575CrossRef
    Smiatek J, Schmid F (2011) Mesoscopic simulations of electroosmotic flow and electrophoresis in nanochannels. Comput Phys Commun 182:1941–1944. doi:10.​1016/​j.​cpc.​2010.​11.​021 CrossRef
    Smiatek J, Sega M, Holm C, Schiller UD, Schmid F (2009) Mesoscopic simulations of the counterion-induced electro-osmotic flow: a comparative study. J Chem Phys 130:244702–244709CrossRef
    Smith ER (1981) Electrostatic energy in ionic crystals. Proc R Soc Lond Ser A Math Phys Sci 375:475–505. doi:10.​2307/​2990334 MathSciNet CrossRef MATH
    Smoluchowski MV (1903) Contribution to the theory of electro-osmosis and related phenomena. Bull Int Acad Sci Cracovie 3:184–199
    Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977CrossRef
    Sze A, Erickson D, Ren L, Li D (2003) Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow. J Colloid Interface Sci 261:402–410CrossRef
    Van Hal R, Eijkel J, Bergveld P (1996) A general model to describe the electrostatic potential at electrolyte oxide interfaces. Adv Colloid Interface Sci 69:31–62CrossRef
    Volkov A, Paula S, Deamer D (1997) Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochem Bioenerg 42:153–160CrossRef
    Waddington TC (1966) Ionic radii and the method of the undetermined parameter. Trans Faraday Soc 62:1482–1492CrossRef
    Wang C, Wang L, Zhu X, Wang Y, Xue J (2012) Low-voltage electroosmotic pumps fabricated from track-etched polymer membranes. Lab Chip 12:1710–1716CrossRef
    Wheeler DR, Rowley NGFLR (1997) Non-equilibrium molecular dynamics simulation of the shear viscosity of liquid methanol: adaptation of the Ewald sum to Lees–Edwards boundary conditions. Mol Phys 92:55–62CrossRef
    Woods LA, Gandhi PU, Ewing AG (2005) Electrically assisted sampling across membranes with electrophoresis in nanometer inner diameter capillaries. Anal Chem 77:1819–1823CrossRef
    Yan K, Chen Y-Z, Han J, Liu G-R, Wang J-S, Hadjiconstantinou NG (2012) Dissipative particle dynamics simulation of field-dependent DNA mobility in nanoslits. Microfluid Nanofluid 12:157–163CrossRef
    Yeh I-C, Berkowitz ML (1999) Ewald summation for systems with slab geometry. J Chem Phys 111:3155–3162CrossRef
    Zhang B, Wood M, Lee H (2009) A silica nanochannel and its applications in sensing and molecular transport. Anal Chem 81:5541–5548CrossRef
    Zheng Z, Hansford D, Conlisk A (2003) Effect of multivalent ions on electroosmotic flow in micro- and nanochannels. Electrophoresis 24:3006–3017. doi:10.​1002/​elps.​200305561 CrossRef
    Zhou J, Schmid F (2012) Dielectric response of nanoscopic spherical colloids in alternating electric fields: a dissipative particle dynamics simulation. J Phys Condens Matter 24:464112CrossRef
  • 作者单位:Abouzar Moshfegh (1)
    Ahmad Jabbarzadeh (1)

    1. School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
  • 刊物类别:Engineering
  • 刊物主题:Engineering Fluid Dynamics
    Medical Microbiology
    Polymer Sciences
    Nanotechnology
    Mechanics, Fluids and Thermodynamics
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1613-4990
文摘
A fully explicit mesoscale simulation of electroosmotic flow (EOF) in nanochannels is presented by an extended dissipative particle dynamics (DPD) method. To avoid formation of ionic pairs through interacting soft-core charges, a Slater-type smearing distribution borrowed from quantum mechanics is utilized to surround each soft DPD ion with a charge cloud. To account for reduced periodicity normal to the walls direction, a corrected version of 3D Ewald sum is implemented in which a dipole moment term is deducted from energy and force terms of non-frozen charges. Simulation box is then elongated normal to walls to dampen spurious interslab interactions by adding vacuum gaps between periodic images. These measures together with the established unit conversions guarantee perfect match to molecular dynamics results. The transition of EOF velocity profile from parabolic (equivalent to overlap of electric double layers) to plug-like shapes is studied across the changing electric field between 0.06 and 0.41 [V/nm], and varying salt concentration from 0.26 to 2.0 [M]. It is found that 1.25 [V] increase in the driving voltage can potentially enhance the electroosmotic flow rate by 8–11 times in the range of ionic concentrations studied. The range of surface zeta potential calculated as \( 27 < \zeta < 52 \) [mV] in the linear response regime, as identified to occur for 0.24 ≤ E [V/nm], agrees reasonably with numerical and experimental studies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700