Numerical simulation of AC electrothermal micropump using a fully coupled model
详细信息    查看全文
  • 作者:F. J. Hong (1) mehongfj@sjtu.edu.cn
    F. Bai (1)
    P. Cheng (1)
  • 关键词:Fully coupled &#8211 ; Numerical model &#8211 ; Electrothermal &#8211 ; Joule heating &#8211 ; Micropump
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2012
  • 出版时间:September 2012
  • 年:2012
  • 卷:13
  • 期:3
  • 页码:411-420
  • 全文大小:686.2 KB
  • 参考文献:1. Bottausci F, Neumann T, Mader MA, Mezic I, Jaeger L, Tirrell M (2009) DNA hybridization enhancement in microarrays using AC-electrothermal flow. In: Proceedings of the Asme Fluids Engineering Division Summer Conference, 2008, 2,539–546
    2. Cao J, Cheng P, Hong F (2008a) A numerical analysis of forces imposed on particles in conventional dielectrophoresis in microchannels with interdigitated electrodes. J Electrostat 66(11–12):620–626. doi:
    3. Cao J, Cheng P, Hong FJ (2008b) A numerical study of an electrothermal vortex enhanced micromixer. Microfluid Nanofluid 5(1):13–21. doi:
    4. Cao J, Cheng P, Hong FJ (2009) Applications of electrohydrodynamics and Joule heating effects in microfluidic chips: a review. Science in China Series E-Technological Sciences 52(12):3477–3490. doi:
    5. Castellanos A (ed) (1998) Electrohydrodynamics, 1st edn. Springer, New York
    6. Chen DF, Du H (2006) Simulation studies on electrothermal fluid flow induced in a dielectrophoretic microelectrode system. J Micromech Microeng 16(11):2411–2419. doi:
    7. Du E, Manoochehri S (2008) Enhanced AC electrothermal fluidic pumping in microgrooved channels. J Appl Phys 104 (6). doi:10.1063/1.2977617
    8. Feldman HC, Sigurdson M, Meinhart CD (2007) AC electrothermal enhancement of heterogeneous assays in microfluidics. Lab Chip 7(11):1553–1559. doi:
    9. Fuhr G, Schnellet T, Wagnert B (1994) Travelling wave-driven microfabricated electrohydrodynamic pumps for liquids. J Micromech Microeng 4:10
    10. Garcia-Sanchez P, Ramos A, Mugele F (2010) Electrothermally driven flows in AC electrowetting. Phys Rev E 81 (1). doi:10.1103/Physreve.81.015303
    11. Green NG, Ramos A, Gonzalez A, Castellanos A, Morgan H (2000a) Electric field induced fluid flow on microelectrodes: the effect of illumination. J Phys D Appl Phys 33(2):L13–L17
    12. Green NG, Ramos A, Gonzalez A, Morgan H, Castellanos A (2000b) Fluid flow induced by nonuniform AC electric fields in electrolytes on microelectrodes. I. Experimental measurements. Phys Rev E 61(4):4011–4018
    13. Green NG, Ramos A, Gonzalez A, Castellanos A, Morgan H (2001) Electrothermally induced fluid flow on microelectrodes. J Electrostat 53(2):71–87
    14. Hong FJ, Cao J, Cheng P (2011) A parametric study of AC electrothermal flow in microchannels with asymmetrical interdigitated electrodes. Int Commun Heat Mass Transfer 38(3):275–279. doi:
    15. Hu XY, Bessette PH, Qian JR, Meinhart CD, Daugherty PS, Soh HT (2005) Marker-specific sorting of rare cells using dielectrophoresis. Proc Natl Acad Sci USA 102(44):15757–15761. doi:
    16. Huang KR, Chang JS, Chao SD, Wu KC, Yang CK, Lai CY, Chen SH (2008) Simulation on binding efficiency of immunoassay for a biosensor with applying electrothermal effect. J Appl Phys 104 (6). doi:10.1063/1.2981195
    17. Kang YJ, Li DQ, Kalams SA, Eid JE (2008) DC-Dielectrophoretic separation of biological cells by size. Biomed Microdevices 10(2):243–249. doi:
    18. Lide DR (1994) CRC handbook of chemistry and physics, 74th edn. CRC, London
    19. Morgan H, Green NG (2003) AC Electrokinetics: colloids and nanoparticles. Research Studies Press LTD., Baldock
    20. Perch-Nielsen IR, Green NG, Wolff A (2004) Numerical simulation of travelling wave induced electrothermal fluid flow. J Phys D Appl Phys 37(16):2323–2330. doi:
    21. Pratt KW, Koch WF, Wu YC, Berezansky PA (2001) Molarity-based primary standards of electrolytic conductivity. Pure Appl Chem 73(11):11
    22. Ramos A, Morgan H, Green NG, Castellanos A (1998) AC electrokinetics: a review of forces in microelectrode structures. J Phys D Appl Phys 31(18):2338–2353
    23. Sigurdson M, Wang DZ, Meinhart CD (2005) Electrothermal stirring for heterogeneous immunoassays. Lab Chip 5(12):1366–1373. doi:
    24. Stratton JA (1941) Electromagnetic theory. McGraw Hill, New York
    25. Wagner W, Kruse A (1998) Properties of water and steam. Springer, Berlin
    26. Williams SJ, Kumar A, Green NG, Wereley ST (2010) Optically induced electrokinetic concentration and sorting of colloids. J of Micromech Microeng 20 (1). doi:10.1088/0960-1317/20/1/015022
    27. Wu J, Lian M, Yang K (2007) Micropumping of biofluids by alternating current electrothermal effects. Appl Phys Lett 90 (23). doi:10.1063/1.2746413
    28. Yang J, Huang Y, Wang XB, Becker FF, Gascoyne PRC (1999) Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field flow fractionation. Anal Chem 71(5):911–918
    29. Zhang RM, Dalton C, Jullien GA (2011) Two-phase AC electrothermal fluidic pumping in a coplanar asymmetric electrode array. Microfluid Nanofluid 10(3):521–529. doi:
  • 作者单位:1. Ministry of Education Key Laboratory of Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
  • ISSN:1613-4990
文摘
The classic model by Ramos et al. for numerical simulation of alternating current electrothermal (ACET) flow is a decoupled model based on an electrothermal force derived using a linear perturbation method, which is not appropriate for the applications, where Joule heating is large and the effect of temperature rise on material properties cannot be neglected. An electrically–thermally–hydrodynamically coupled (fully coupled) ACET flow model considering variable electrical and thermophysical properties of the fluids with temperature was developed. The model solves AC electrical equations and is based on a more general electrostatic force expression. Comparisons with the classic decoupled model were conducted through the numerical simulations of an ACET micropump with asymmetric electrode pairs. It was found that when temperature rise is small the fully coupled model has the same results with the classic model, and the difference between the two models becomes larger and larger with the increasing temperature. The classic decoupled model underestimates the maximum temperature rise and pumping velocity, since it cannot consider the increase in electrical conductivity and the decrease in viscosity with temperature. The critical frequencies where the lowest velocity occurs or pumping direction reverses are shifted to higher frequencies with the increasing voltage according to the fully coupled model, while are kept unchanged according to the classic model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700