A Graph-Based Formation Algorithm for Odor Plume Tracing
详细信息    查看全文
  • 关键词:Odor source localization ; Plume tracing ; Formation control ; Robotic olfaction
  • 刊名:Springer Tracts in Advanced Robotics
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:112
  • 期:1
  • 页码:255-269
  • 全文大小:805 KB
  • 参考文献:1.Cabrita, G., Marques, L., Gazi, V.: Virtual cancelation plume for multiple odor source localization. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5552–5558 (2013). doi:10.​1109/​IROS.​2013.​6697161
    2.Cao, M.L., Meng, Q.H., Wang, X.W., Luo, B., Zeng, M., Li, W.: Localization of multiple odor sources via selective olfaction and adapted ant colony optimization algorithm. In: IEEE International Conference on Robotics and Biomimetics, pp. 1222–1227 (2013). doi:10.​1109/​ROBIO.​2013.​6739631
    3.de Croon, G., O’Connor, L., Nicol, C., Izzo, D.: Evolutionary robotics approach to odor source localization. Neurocomputing 121, 481–497 (2013). doi:10.​1016/​j.​neucom.​2013.​05.​028 CrossRef
    4.Dhariwal, A., Sukhatme, G., Requicha, A.: Bacterium-inspired robots for environmental monitoring. In: IEEE International Conference on Robotics and Automation, pp. 1436–1443 (2004). doi:10.​1109/​ROBOT.​2004.​1308026
    5.Distante, C., Indiveri, G., Reina, G.: An application of mobile robotics for olfactory monitoring of hazardous industrial sites. Ind. Rob. Int. J. 36(1), 51–59 (2009). doi:10.​1108/​0143991091092467​5 CrossRef
    6.Falconi, R., Gowal, S., Martinoli, A.: Graph based distributed control of non-holonomic vehicles endowed with local positioning information engaged in escorting missions. In: IEEE International Conference on Robotics and Automation, pp. 3207–3214 (2010). doi:10.​1109/​ROBOT.​2010.​5509139
    7.Farrell, J.A., Murlis, J., Long, X., Li, W., Cardé, R.T.: Filament-based atmospheric dispersion model to achieve short time-scale structure of odor plumes. Environ. Fluid Mech. 2(1–2), 143–169 (2002). doi:10.​1023/​A:​1016283702837 CrossRef
    8.Genovese, V., Dario, P., Magni, R., Odetti, L.: Self organizing behavior and swarm intelligence in a pack of mobile miniature robots in search of pollutants. IEEE/RSJ Int. Conf. Intell. Rob. Syst. 3, 1575–1582 (1992). doi:10.​1109/​IROS.​1992.​594225 CrossRef
    9.Hartman, J.: A possible method for the rapid estimation of flavours in vegetables. Proc. Am. Soc. Hort. Sci. 64, 335–342 (1954)
    10.Hayes, A., Martinoli, A., Goodman, R.: Distributed odor source localization. IEEE Sens. J. 2(3), 260–271 (2002). doi:10.​1109/​JSEN.​2002.​800682 CrossRef
    11.Ishida, H., Nakamoto, T., Moriizumi, T., Kikas, T., Janata, J.: Plume-tracking robots: a new application of chemical sensors. Biol. Bull. 200(2), 222–226 (2001)CrossRef
    12.Jatmiko, W., Sekiyama, K., Fukuda, T.: A PSO-based mobile robot for odor source localization in dynamic advection-diffusion with obstacles environment: theory, simulation and measurement. IEEE Comput. Intell. Mag. 2(2), 37–51 (2007). doi:10.​1109/​MCI.​2007.​353419 CrossRef
    13.Khalili, A., Rastegarnia, A., Islam, M.K., Yang, Z.: A bio-inspired cooperative algorithm for distributed source localization with mobile nodes. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3515–3518 (2013). doi:10.​1109/​EMBC.​2013.​6610300
    14.Kowadlo, G., Russell, R.A.: Robot odor localization: a taxonomy and survey. Int. J. Robot. Res. 27(8), 869–894 (2008). doi:10.​1177/​0278364908095118​ CrossRef
    15.Li, J.G., Meng, Q.H., Wang, Y., Zeng, M.: Odor source localization using a mobile robot in outdoor airflow environments with a particle filter algorithm. Auton. Rob. 30(3), 281–292 (2011). doi:10.​1007/​s10514-011-9219-2 CrossRef
    16.Lilienthal, A., Duckett, T.: Experimental analysis of gas-sensitive Braitenberg vehicles. Adv. Robot. 18(8), 817–834 (2004). doi:10.​1163/​1568553041738103​ CrossRef
    17.Lochmatter, T.: Bio-inspired and probabilistic algorithms for distributed odor source localization using mobile robots. Ph.D. thesis 4628, EPFL (2010). doi:10.​5075/​epfl-thesis-4628
    18.Lochmatter, T., Göl, E., Navarro, I., Martinoli, A.: A plume tracking algorithm based on crosswind formations. In: International Symposium on Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics (2013), vol. 83, pp. 91–102 (2010). doi:10.​1007/​978-3-642-32723-0_​7
    19.Marjovi, A., Marques, L.: Optimal swarm formation for odor plume finding. IEEE Trans. Cybern. 99 (2014). doi:10.​1109/​TCYB.​2014.​2306291
    20.Marques, L., Nunes, U., de Almeida, A.T.: Olfaction-based mobile robot navigation. Thin Solid Films 418(1), 51–58 (2002). doi:10.​1016/​S0040-6090(02)00593-X CrossRef
    21.Marques, L., Nunes, U., Almeida, A.T.: Particle swarm-based olfactory guided search. Auton. Rob. 20(3), 277–287 (2006). doi:10.​1007/​s10514-006-7567-0 CrossRef
    22.Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods in Multiagent Networks. Princeton University Press, Princeton (2010)
    23.Michel, O.: Webots: professional mobile robot simulation. Int. J. Adv. Rob. Syst. 1(1), 39–42 (2004). doi:10.​5772/​5618
    24.Moncrieff, R.W.: An instrument for measuring and classifying odors. J. Appl. Physiol. 16(4), 742–749 (1961)
    25.Pugh, J., Raemy, X., Favre, C., Falconi, R., Martinoli, A.: A Fast onboard relative positioning module for multirobot systems. IEEE/ASME Trans. Mechatron. 14(2), 151–162 (2009). doi:10.​1109/​TMECH.​2008.​2011810 CrossRef
    26.Roberts, P.J.W., Webster, D.R.: Turbulent Diffusion. ASCE Press, Reston, Virginia (2002)
    27.Rozas, R., Morales, J., Vega, D.: Artificial smell detection for robotic navigation. In: International Conference on Advanced Robotics, pp. 1730–1733 (1991). doi:10.​1109/​ICAR.​1991.​240354
    28.Vergassola, M., Villermaux, E., Shraiman, B.I.: ‘Infotaxis’ as a strategy for searching without gradients. Nature 445(7126), 406–409 (2007). doi:10.​1038/​nature05464 CrossRef
  • 作者单位:Jorge M. Soares (5) (6)
    A. Pedro Aguiar (7)
    António M. Pascoal (6) (8)
    Alcherio Martinoli (5)

    5. Distributed Intelligent Systems and Algorithms Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    6. Institute for Systems and Robotics, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
    7. Department of Electrical and Computer Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
    8. National Institute of Oceanography, Dona Paula, Goa, India
  • 丛书名:Distributed Autonomous Robotic Systems
  • ISBN:978-4-431-55879-8
  • 刊物类别:Engineering
  • 刊物主题:Automation and Robotics
    Control Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1610-742X
文摘
Odor plume tracing is a challenging robotics application, made difficult by the combination of the patchy characteristics of odor distribution and the slow response of the available sensors. This work proposes a graph-based formation control algorithm to coordinate a group of small robots equipped with odor sensors, with the goal of tracing an odor plume to its source. This approach makes it possible to organize the robots in arbitrary and evolving formation shapes with the aim of improving tracing performance. The algorithm was evaluated in a high-fidelity submicroscopic simulator, using different formations and achieving quick convergence and negligible distance overhead in laminar wind flows.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700