The genetic basis for inherited forms of sinoatrial dysfunction and atrioventricular node dysfunction
详细信息    查看全文
  • 作者:Raffaella Milanesi ; Annalisa Bucchi…
  • 关键词:SAN ; AVN ; Sick sinus syndrome ; Atrioventricular block ; SAN dysfunction ; AVN dysfunction
  • 刊名:Journal of Interventional Cardiac Electrophysiology
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:43
  • 期:2
  • 页码:121-134
  • 全文大小:3,373 KB
  • 参考文献:1.Dobrzynski, H., Anderson, R. H., Atkinson, A., Borbas, Z., D'Souza, A., Fraser, J. F., et al. (2013). Structure, function and clinical relevance of the cardiac conduction system, including the atrioventricular ring and outflow tract tissues. Pharmacology and Therapeutics, 139(2), 260鈥?88.PubMed
    2.Baruscotti, M., Barbuti, A., & Bucchi, A. (2010). The cardiac pacemaker current. Journal of Molecular and Cellular Cardiology, 48(1), 55鈥?4.PubMed
    3.Beinart, R., Ruskin, J., & Milan, D. (2010). The genetics of conduction disease. Heart Failure Clinics, 6(2), 201鈥?14.PubMed
    4.Benson, D. W. (2004). Genetics of atrioventricular conduction disease in humans. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 280(2), 934鈥?39.
    5.Remme, C. A. (2013). Cardiac sodium channelopathy associated with SCN5A mutations: electrophysiological, molecular and genetic aspects. The Journal of Physiology, 591(Pt 17), 4099鈥?116.PubMed Central PubMed
    6.Wolf, C. M., & Berul, C. I. (2006). Inherited conduction system abnormalities鈥攐ne group of diseases, many genes. Journal of Cardiovascular Electrophysiology, 17(4), 446鈥?55.PubMed
    7.Brioschi, C., Micheloni, S., Tellez, J. O., Pisoni, G., Longhi, R., Moroni, P., et al. (2009). Distribution of the pacemaker HCN4 channel mRNA and protein in the rabbit sinoatrial node. Journal of Molecular and Cellular Cardiology, 47(2), 221鈥?27.PubMed
    8.Honjo, H., Boyett, M. R., Kodama, I., & Toyama, J. (1996). Correlation between electrical activity and the size of rabbit sino-atrial node cells. The Journal of Physiology, 496(Pt 3), 795鈥?08.PubMed Central PubMed
    9.DiFrancesco, D. (2010). The role of the funny current in pacemaker activity. Circulation Research, 106(3), 434鈥?46.PubMed
    10.Lakatta, E. G., & DiFrancesco, D. (2009). What keeps us ticking: a funny current, a calcium clock, or both? Journal of Molecular and Cellular Cardiology, 47(2), 157鈥?70.PubMed
    11.Munk, A. A., Adjemian, R. A., Zhao, J., Ogbaghebriel, A., & Shrier, A. (1996). Electrophysiological properties of morphologically distinct cells isolated from the rabbit atrioventricular node. The Journal of Physiology, 493(Pt 3), 801鈥?18.PubMed Central PubMed
    12.Benson, D. W., Wang, D. W., Dyment, M., Knilans, T. K., Fish, F. A., Strieper, M. J., et al. (2003). Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). The Journal of Clinical Investigation, 112(7), 1019鈥?028.PubMed Central PubMed
    13.Mangrum, J. M., & DiMarco, J. P. (2000). The evaluation and management of bradycardia. The New England Journal of Medicine, 342(10), 703鈥?09.PubMed
    14.Baruteau, A. E., Behaghel, A., Fouchard, S., Mabo, P., Schott, J. J., Dina, C., et al. (2012). Parental electrocardiographic screening identifies a high degree of inheritance for congenital and childhood nonimmune isolated atrioventricular block. Circulation, 126(12), 1469鈥?477.PubMed
    15.Baruscotti, M., DiFrancesco, D., & Robinson, R. B. (1996). A TTX-sensitive inward sodium current contributes to spontaneous activity in newborn rabbit sino-atrial node cells. The Journal of Physiology, 492(Pt 1), 21鈥?0.PubMed Central PubMed
    16.Kodama, I., Nikmaram, M. R., Boyett, M. R., Suzuki, R., Honjo, H., & Owen, J. M. (1997). Regional differences in the role of the Ca2+ and Na+ currents in pacemaker activity in the sinoatrial node. The American Journal of Physiology, 272(6 Pt 2), H2793鈥?806.PubMed
    17.Remme, C. A., Verkerk, A. O., Hoogaars, W. M., Aanhaanen, W. T., Scicluna, B. P., Annink, C., et al. (2009). The cardiac sodium channel displays differential distribution in the conduction system and transmural heterogeneity in the murine ventricular myocardium. Basic Research in Cardiology, 104(5), 511鈥?22.PubMed Central PubMed
    18.Maier, S. K., Westenbroek, R. E., Yamanushi, T. T., Dobrzynski, H., Boyett, M. R., Catterall, W. A., et al. (2003). An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node. Proceedings of the National Academy of Sciences of the United States of America, 100(6), 3507鈥?512.PubMed Central PubMed
    19.Dobrzynski, H., Boyett, M. R., & Anderson, R. H. (2007). New insights into pacemaker activity: promoting understanding of sick sinus syndrome. Circulation, 115(14), 1921鈥?932.PubMed
    20.Makiyama, T., Akao, M., Tsuji, K., Doi, T., Ohno, S., Takenaka, K., et al. (2005). High risk for bradyarrhythmic complications in patients with Brugada syndrome caused by SCN5A gene mutations. Journal of the American College of Cardiology, 46(11), 2100鈥?106.PubMed
    21.Chandler, N. J., Greener, I. D., Tellez, J. O., Inada, S., Musa, H., Molenaar, P., et al. (2009). Molecular architecture of the human sinus node: insights into the function of the cardiac pacemaker. Circulation, 119(12), 1562鈥?575.PubMed
    22.Verkerk, A. O., Wilders, R., van Borren, M. M., & Tan, H. L. (2009). Is sodium current present in human sinoatrial node cells? International Journal of Biological Sciences, 5(2), 201鈥?04.PubMed Central PubMed
    23.Makita, N., Sumitomo, N., Watanabe, I., & Tsutsui, H. (2007). Novel SCN5A mutation (Q55X) associated with age-dependent expression of Brugada syndrome presenting as neurally mediated syncope. Heart Rhythm, 4(4), 516鈥?19.PubMed
    24.Holst, A. G., Liang, B., Jespersen, T., Bundgaard, H., Haunso, S., Svendsen, J. H., et al. (2010). Sick sinus syndrome, progressive cardiac conduction disease, atrial flutter and ventricular tachycardia caused by a novel SCN5A mutation. Cardiology, 115(4), 311鈥?16.PubMed
    25.Bezzina, C. R., Rook, M. B., Groenewegen, W. A., Herfst, L. J., van der Wal, A. C., Lam, J., et al. (2003). Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system. Circulation Research, 92(2), 159鈥?68.PubMed
    26.Smits, J. P., Koopmann, T. T., Wilders, R., Veldkamp, M. W., Opthof, T., Bhuiyan, Z. A., et al. (2005). A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. Journal of Molecular and Cellular Cardiology, 38(6), 969鈥?81.PubMed
    27.Makita, N., Sasaki, K., Groenewegen, W. A., Yokota, T., Yokoshiki, H., Murakami, T., et al. (2005). Congenital atrial standstill associated with coinheritance of a novel SCN5A mutation and connexin 40 polymorphisms. Heart Rhythm, 2(10), 1128鈥?134.PubMed
    28.Gui, J., Wang, T., Jones, R. P., Trump, D., Zimmer, T., & Lei, M. (2010). Multiple loss-of-function mechanisms contribute to SCN5A-related familial sick sinus syndrome. PLoS One, 5(6), e10985.PubMed Central PubMed
    29.Olson, T. M., Michels, V. V., Ballew, J. D., Reyna, S. P., Karst, M. L., Herron, K. J., et al. (2005). Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA, 293(4), 447鈥?54.PubMed Central PubMed
    30.Wang, D. W., Viswanathan, P. C., Balser, J. R., George, A. L., Jr., & Benson, D. W. (2002). Clinical, genetic, and biophysical characterization of SCN5A mutations associated with atrioventricular conduction block. Circulation, 105(3), 341鈥?46.PubMed
    31.Detta, N., Frisso, G., Limongelli, G., Marzullo, M., Calabro, R., & Salvatore, F. (2014). Genetic analysis in a family affected by sick sinus syndrome may reduce the sudden death risk in a young aspiring competitive athlete. International Journal of Cardiology, 170(3), e63鈥?5.PubMed
    32.Rossenbacker, T., Carroll, S. J., Liu, H., Kuiperi, C., de Ravel, T. J., Devriendt, K., et al. (2004). Novel pore mutation in SCN5A manifests as a spectrum of phenotypes ranging from atrial flutter, conduction disease, and Brugada syndrome to sudden cardiac death. Heart Rhythm, 1(5), 610鈥?15.PubMed
    33.Horne, A. J., Eldstrom, J., Sanatani, S., & Fedida, D. (2011). A novel mechanism for LQT3 with 2:1 block: a pore-lining mutation in Nav1.5 significantly affects voltage-dependence of activation. Heart Rhythm, 8(5), 770鈥?77.PubMed
    34.Viswanathan, P. C., Benson, D. W., & Balser, J. R. (2003). A common SCN5A polymorphism modulates the biophysical effects of an SCN5A mutation. The Journal of Clinical Investigation, 111(3), 341鈥?46.PubMed Central PubMed
    35.Tan, H. L., Bink-Boelkens, M. T., Bezzina, C. R., Viswanathan, P. C., Beaufort-Krol, G. C., van Tintelen, P. J., et al. (2001). A sodium-channel mutation causes isolated cardiac conduction disease. Nature, 409(6823), 1043鈥?047.PubMed
    36.Zhang, Y., Wang, T., Ma, A., Zhou, X., Gui, J., Wan, H., et al. (2008). Correlations between clinical and physiological consequences of the novel mutation R878C in a highly conserved pore residue in the cardiac Na+ channel. Acta Physiologica (Oxford, England), 194(4), 311鈥?23.
    37.Ge, J., Sun, A., Paajanen, V., Wang, S., Su, C., Yang, Z., et al. (2008). Molecular and clinical characterization of a novel SCN5A mutation associated with atrioventricular block and dilated cardiomyopathy. Circulation. Arrhythmia and Electrophysiology, 1(2), 83鈥?2.PubMed
    38.Kyndt, F., Probst, V., Potet, F., Demolombe, S., Chevallier, J. C., Baro, I., et al. (2001). Novel SCN5A mutation leading either to isolated cardiac conduction defect or Brugada syndrome in a large French family. Circulation, 104(25), 3081鈥?086.PubMed
    39.Niu, D. M., Hwang, B., Hwang, H. W., Wang, N. H., Wu, J. Y., Lee, P. C., et al. (2006). A common SCN5A polymorphism attenuates a severe cardiac phenotype caused by a nonsense SCN5A mutation in a Chinese family with an inherited cardiac conduction defect. Journal of Medical Genetics, 43(10), 817鈥?21.PubMed Central PubMed
    40.Zumhagen, S., Veldkamp, M. W., Stallmeyer, B., Baartscheer, A., Eckardt, L., Paul, M., et al. (2013). A heterozygous deletion mutation in the cardiac sodium channel gene SCN5A with loss- and gain-of-function characteristics manifests as isolated conduction disease, without signs of Brugada or long QT syndrome. PLoS One, 8(6), e67963.PubMed Central PubMed
    41.Grant, A. O., Carboni, M. P., Neplioueva, V., Starmer, C. F., Memmi, M., Napolitano, C., et al. (2002). Long QT syndrome, Brugada syndrome, and conduction system disease are linked to a single sodium channel mutation. The Journal of Clinical Investigation, 110(8), 1201鈥?209.PubMed Central PubMed
    42.Bennett, P. B., Yazawa, K., Makita, N., & George, A. L., Jr. (1995). Molecular mechanism for an inherited cardiac arrhythmia. Nature, 376(6542), 683鈥?85.PubMed
    43.Keller, D. I., Acharfi, S., Delacretaz, E., Benammar, N., Rotter, M., Pfammatter, J. P., et al. (2003). A novel mutation in SCN5A, delQKP 1507鈥?509, causing long QT syndrome: role of Q1507 residue in sodium channel inactivation. Journal of Molecular and Cellular Cardiology, 35(12), 1513鈥?521.PubMed
    44.Akai, J., Makita, N., Sakurada, H., Shirai, N., Ueda, K., Kitabatake, A., et al. (2000). A novel SCN5A mutation associated with idiopathic ventricular fibrillation without typical ECG findings of Brugada syndrome. FEBS Letters, 479(1鈥?), 29鈥?4.PubMed
    45.Chang, C. C., Acharfi, S., Wu, M. H., Chiang, F. T., Wang, J. K., Sung, T. C., et al. (2004). A novel SCN5A mutation manifests as a malignant form of long QT syndrome with perinatal onset of tachycardia/bradycardia. Cardiovascular Research, 64(2), 268鈥?78.PubMed
    46.Lupoglazoff, J. M., Cheav, T., Baroudi, G., Berthet, M., Denjoy, I., Cauchemez, B., et al. (2001). Homozygous SCN5A mutation in long-QT syndrome with functional two-to-one atrioventricular block. Circulation Research, 89(2), E16鈥?1.PubMed
    47.Wei, J., Wang, D. W., Alings, M., Fish, F., Wathen, M., Roden, D. M., et al. (1999). Congenital long-QT syndrome caused by a novel mutation in a conserved acidic domain of the cardiac Na+ channel. Circulation, 99(24), 3165鈥?171.PubMed
    48.An, R. H., Wang, X. L., Kerem, B., Benhorin, J., Medina, A., Goldmit, M., et al. (1998). Novel LQT-3 mutation affects Na+ channel activity through interactions between alpha- and beta1-subunits. Circulation Research, 83(2), 141鈥?46.PubMed
    49.Veldkamp, M. W., Wilders, R., Baartscheer, A., Zegers, J. G., Bezzina, C. R., & Wilde, A. A. (2003). Contribution of sodium channel mutations to bradycardia and sinus node dysfunction in LQT3 families. Circulation Research, 92(9), 976鈥?83.PubMed
    50.Bezzina, C., Veldkamp, M. W., van Den Berg, M. P., Postma, A. V., Rook, M. B., Viersma, J. W., et al. (1999). A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circulation Research, 85(12), 1206鈥?213.PubMed
    51.Tan, B. H., Iturralde-Torres, P., Medeiros-Domingo, A., Nava, S., Tester, D. J., Valdivia, C. R., et al. (2007). A novel C-terminal truncation SCN5A mutation from a patient with sick sinus syndrome, conduction disorder and ventricular tachycardia. Cardiovascular Research, 76(3), 409鈥?17.PubMed Central PubMed
    52.Ziyadeh-Isleem, A., Clatot, J., Duchatelet, S., Gandjbakhch, E., Denjoy, I., Hidden-Lucet, F., et al. (2014). A truncating SCN5A mutation combined with genetic variability causes sick sinus syndrome and early atrial fibrillation. Heart Rhythm, 11(6), 1015鈥?023.PubMed Central PubMed
    53.Schott, J. J., Alshinawi, C., Kyndt, F., Probst, V., Hoorntje, T. M., Hulsbeek, M., et al. (1999). Cardiac conduction defects associate with mutations in SCN5A. Nature Genetics, 23(1), 20鈥?1.PubMed
    54.Probst, V., Kyndt, F., Potet, F., Trochu, J. N., Mialet, G., Demolombe, S., et al. (2003). Haploinsufficiency in combination with aging causes SCN5A-linked hereditary Lenegre disease. Journal of the American College of Cardiology, 41(4), 643鈥?52.PubMed
    55.Herfst, L. J., Potet, F., Bezzina, C. R., Groenewegen, W. A., Le Marec, H., Hoorntje, T. M., et al. (2003). Na+ channel mutation leading to loss of function and non-progressive cardiac conduction defects. Journal of Molecular and Cellular Cardiology, 35(5), 549鈥?57.PubMed
    56.Lei, M., Huang, C. L., & Zhang, Y. (2008). Genetic Na+ channelopathies and sinus node dysfunction. Progress in Biophysics and Molecular Biology, 98(2鈥?), 171鈥?78.PubMed
    57.Butters, T. D., Aslanidi, O. V., Inada, S., Boyett, M. R., Hancox, J. C., Lei, M., et al. (2010). Mechanistic links between Na+ channel (SCN5A) mutations and impaired cardiac pacemaking in sick sinus syndrome. Circulation Research, 107(1), 126鈥?37.PubMed Central PubMed
    58.Baruscotti, M., Westenbroek, R., Catterall, W. A., DiFrancesco, D., & Robinson, R. B. (1997). The newborn rabbit sino-atrial node expresses a neuronal type I-like Na+ channel. The Journal of Physiology, 498(Pt 3), 641鈥?48.PubMed Central PubMed
    59.Baruscotti, M., DiFrancesco, D., & Robinson, R. B. (2000). Na(+) current contribution to the diastolic depolarization in newborn rabbit SA node cells. American Journal of Physiology - Heart and Circulatory Physiology, 279(5), H2303鈥?309.PubMed
    60.Haufe, V., Cordeiro, J. M., Zimmer, T., Wu, Y. S., Schiccitano, S., Benndorf, K., et al. (2005). Contribution of neuronal sodium channels to the cardiac fast sodium current INa is greater in dog heart Purkinje fibers than in ventricles. Cardiovascular Research, 65(1), 117鈥?27.PubMed
    61.Du, Y., Huang, X., Wang, T., Han, K., Zhang, J., Xi, Y., et al. (2007). Downregulation of neuronal sodium channel subunits Nav1.1 and Nav1.6 in the sinoatrial node from volume-overloaded heart failure rat. Pfl眉gers Archiv, 454(3), 451鈥?59.PubMed
    62.Marionneau, C., Couette, B., Liu, J., Li, H., Mangoni, M. E., Nargeot, J., et al. (2005). Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. The Journal of Physiology, 562(Pt 1), 223鈥?34.PubMed Central PubMed
    63.Greener, I. D., Monfredi, O., Inada, S., Chandler, N. J., Tellez, J. O., Atkinson, A., et al. (2011). Molecular architecture of the human specialised atrioventricular conduction axis. Journal of Molecular and Cellular Cardiology, 50(4), 642鈥?51.PubMed
    64.Kalume, F., Westenbroek, R. E., Cheah, C. S., Yu, F. H., Oakley, J. C., Scheuer, T., et al. (2013). Sudden unexpected death in a mouse model of Dravet syndrome. The Journal of Clinical Investigation, 123(4), 1798鈥?808.PubMed Central PubMed
    65.Sanders, P., Kistler, P. M., Morton, J. B., Spence, S. J., & Kalman, J. M. (2004). Remodeling of sinus node function in patients with congestive heart failure: reduction in sinus node reserve. Circulation, 110(8), 897鈥?03.PubMed
    66.Watanabe, H., Koopmann, T. T., Le Scouarnec, S., Yang, T., Ingram, C. R., Schott, J. J., et al. (2008). Sodium channel beta1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. The Journal of Clinical Investigation, 118(6), 2260鈥?268.PubMed Central PubMed
    67.Lopez-Santiago, L. F., Meadows, L. S., Ernst, S. J., Chen, C., Malhotra, J. D., McEwen, D. P., et al. (2007). Sodium channel Scn1b null mice exhibit prolonged QT and RR intervals. Journal of Molecular and Cellular Cardiology, 43(5), 636鈥?47.PubMed Central PubMed
    68.Verkerk, A. O., Wilders, R., van Borren, M. M., Peters, R. J., Broekhuis, E., Lam, K., et al. (2007). Pacemaker current (I(f)) in the human sinoatrial node. European Heart Journal, 28(20), 2472鈥?478.PubMed
    69.Milano, A., Vermeer, A. M., Lodder, E. M., Barc, J., Verkerk, A. O., Postma, A. V., et al. (2014). HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. Journal of the American College of Cardiology, 64(8), 745鈥?56.PubMed
    70.Nof, E., Luria, D., Brass, D., Marek, D., Lahat, H., Reznik-Wolf, H., et al. (2007). Point mutation in the HCN4 cardiac ion channel pore affecting synthesis, trafficking, and functional expression is associated with familial asymptomatic sinus bradycardia. Circulation, 116(5), 463鈥?70.PubMed
    71.Schweizer, P. A., Schroter, J., Greiner, S., Haas, J., Yampolsky, P., Mereles, D., et al. (2014). The symptom complex of familial sinus node dysfunction and myocardial noncompaction is associated with mutations in the HCN4 channel. Journal of the American College of Cardiology, 64(8), 757鈥?67.PubMed
    72.Laish-Farkash, A., Glikson, M., Brass, D., Marek-Yagel, D., Pras, E., Dascal, N., et al. (2010). A novel mutation in the HCN4 gene causes symptomatic sinus bradycardia in Moroccan Jews. Journal of Cardiovascular Electrophysiology, 21(12), 1365鈥?372.PubMed Central PubMed
    73.Duhme, N., Schweizer, P. A., Thomas, D., Becker, R., Schroter, J., Barends, T. R., et al. (2013). Altered HCN4 channel C-linker interaction is associated with familial tachycardia
    adycardia syndrome and atrial fibrillation. European Heart Journal, 34(35), 2768鈥?775.PubMed
    74.Ueda, K., Nakamura, K., Hayashi, T., Inagaki, N., Takahashi, M., Arimura, T., et al. (2004). Functional characterization of a trafficking-defective HCN4 mutation, D553N, associated with cardiac arrhythmia. The Journal of Biological Chemistry, 279(26), 27194鈥?7198.PubMed
    75.Schulze-Bahr, E., Neu, A., Friederich, P., Kaupp, U. B., Breithardt, G., Pongs, O., et al. (2003). Pacemaker channel dysfunction in a patient with sinus node disease. The Journal of Clinical Investigation, 111(10), 1537鈥?545.PubMed Central PubMed
    76.Milanesi, R., Baruscotti, M., Gnecchi-Ruscone, T., & DiFrancesco, D. (2006). Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. The New England Journal of Medicine, 354(2), 151鈥?57.PubMed
    77.Schweizer, P. A., Duhme, N., Thomas, D., Becker, R., Zehelein, J., Draguhn, A., et al. (2010). cAMP sensitivity of HCN pacemaker channels determines basal heart rate but is not critical for autonomic rate control. Circulation. Arrhythmia and Electrophysiology, 3(5), 542鈥?52.PubMed
    78.Baruscotti, M., Bucchi, A., Viscomi, C., Mandelli, G., Consalez, G., Gnecchi-Rusconi, T., et al. (2011). Deep bradycardia and heart block caused by inducible cardiac-specific knockout of the pacemaker channel gene Hcn4. Proceedings of the National Academy of Sciences of the United States of America, 108(4), 1705鈥?710.PubMed Central PubMed
    79.Perez-Lugones, A., McMahon, J. T., Ratliff, N. B., Saliba, W. I., Schweikert, R. A., Marrouche, N. F., et al. (2003). Evidence of specialized conduction cells in human pulmonary veins of patients with atrial fibrillation. Journal of Cardiovascular Electrophysiology, 14(8), 803鈥?09.PubMed
    80.Suenari, K., Cheng, C. C., Chen, Y. C., Lin, Y. K., Nakano, Y., Kihara, Y., et al. (2012). Effects of ivabradine on the pulmonary vein electrical activity and modulation of pacemaker currents and calcium homeostasis. Journal of Cardiovascular Electrophysiology, 23(2), 200鈥?06.PubMed
    81.Mangoni, M. E., & Nargeot, J. (2008). Genesis and regulation of the heart automaticity. Physiological Reviews, 88(3), 919鈥?82.PubMed
    82.Christel, C. J., Cardona, N., Mesirca, P., Herrmann, S., Hofmann, F., Striessnig, J., et al. (2012). Distinct localization and modulation of Cav1.2 and Cav1.3 L-type Ca2+ channels in mouse sinoatrial node. The Journal of Physiology, 590(Pt 24), 6327鈥?342.PubMed Central PubMed
    83.Mangoni, M. E., Traboulsie, A., Leoni, A. L., Couette, B., Marger, L., Le Quang, K., et al. (2006). Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circulation Research, 98(11), 1422鈥?430.PubMed
    84.Strandberg, L. S., Cui, X., Rath, A., Liu, J., Silverman, E. D., Liu, X., et al. (2013). Congenital heart block maternal sera autoantibodies target an extracellular epitope on the alpha1G T-type calcium channel in human fetal hearts. PLoS One, 8(9), e72668.PubMed Central PubMed
    85.Hu, K., Qu, Y., Yue, Y., & Boutjdir, M. (2004). Functional basis of sinus bradycardia in congenital heart block. Circulation Research, 94(4), e32鈥?8.PubMed
    86.Baig, S. M., Koschak, A., Lieb, A., Gebhart, M., Dafinger, C., Nurnberg, G., et al. (2011). Loss of Ca(v)1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness. Nature Neuroscience, 14(1), 77鈥?4.PubMed
    87.Platzer, J., Engel, J., Schrott-Fischer, A., Stephan, K., Bova, S., Chen, H., et al. (2000). Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell, 102(1), 89鈥?7.PubMed
    88.Mangoni, M. E., Couette, B., Bourinet, E., Platzer, J., Reimer, D., Striessnig, J., et al. (2003). Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5543鈥?548.PubMed Central PubMed
    89.Lahat, H., Eldar, M., Levy-Nissenbaum, E., Bahan, T., Friedman, E., Khoury, A., et al. (2001). Autosomal recessive catecholamine- or exercise-induced polymorphic ventricular tachycardia: clinical features and assignment of the disease gene to chromosome 1p13-21. Circulation, 103(23), 2822鈥?827.PubMed
    90.Sumitomo, N., Sakurada, H., Taniguchi, K., Matsumura, M., Abe, O., Miyashita, M., et al. (2007). Association of atrial arrhythmia and sinus node dysfunction in patients with catecholaminergic polymorphic ventricular tachycardia. Circulation Journal, 71(10), 1606鈥?609.PubMed
    91.Gao, Z., Rasmussen, T. P., Li, Y., Kutschke, W., Koval, O. M., Wu, Y., et al. (2013). Genetic inhibition of Na+鈥揅a2+ exchanger current disables fight or flight sinoatrial node activity without affecting resting heart rate. Circulation Research, 112(2), 309鈥?17.PubMed Central PubMed
    92.Groenke, S., Larson, E. D., Alber, S., Zhang, R., Lamp, S. T., Ren, X., et al. (2013). Complete atrial-specific knockout of sodium-calcium exchange eliminates sinoatrial node pacemaker activity. PLoS One, 8(11), e81633.PubMed Central PubMed
    93.Simrick, S., Schindler, R. F., Poon, K. L., & Brand, T. (2013). Popeye domain-containing proteins and stress-mediated modulation of cardiac pacemaking. Trends in Cardiovascular Medicine, 23(7), 257鈥?63.PubMed
    94.Froese, A., Breher, S. S., Waldeyer, C., Schindler, R. F., Nikolaev, V. O., Rinne, S., et al. (2012). Popeye domain containing proteins are essential for stress-mediated modulation of cardiac pacemaking in mice. The Journal of Clinical Investigation, 122(3), 1119鈥?130.PubMed Central PubMed
    95.Kirchmaier, B. C., Poon, K. L., Schwerte, T., Huisken, J., Winkler, C., Jungblut, B., et al. (2012). The Popeye domain containing 2 (popdc2) gene in zebrafish is required for heart and skeletal muscle development. Developmental Biology, 363(2), 438鈥?50.PubMed Central PubMed
    96.Sz没ts, V., 脰tv枚s, F., D茅zsi, L., V谩gv枚lgyi, C., Szalontai, B., Dobrzynski, H., et al. (2012). What have we learned from two-pore potassium channels? Their molecular configuration and function in the human heart. Acta Biologica Szegediensis, 56(2), 93鈥?07.
    97.Yanni, J., Tellez, J. O., Maczewski, M., Mackiewicz, U., Beresewicz, A., Billeter, R., et al. (2011). Changes in ion channel gene expression underlying heart failure-induced sinoatrial node dysfunction. Circulation. Heart Failure, 4(4), 496鈥?08.PubMed
    98.Lalevee, N., Monier, B., Senatore, S., Perrin, L., & Semeriva, M. (2006). Control of cardiac rhythm by ORK1, a Drosophila two-pore domain potassium channel. Current Biology, 16(15), 1502鈥?508.PubMed
    99.Schindler, R. F., Poon, K. L., Simrick, S., & Brand, T. (2012). The Popeye domain containing genes: essential elements in heart rate control. Cardiovasc Diagn Ther, 2(4), 308鈥?19.PubMed Central PubMed
    100.Brand, T., Simrick, S. L., Poon, K. L., & Schindler, R. F. (2014). The cAMP-binding Popdc proteins have a redundant function in the heart. Biochemical Society Transactions, 42(2), 295鈥?01.PubMed Central PubMed
    101.Camozzi, D., Capanni, C., Cenni, V., Mattioli, E., Columbaro, M., Squarzoni, S., et al. (2014). Diverse lamin-dependent mechanisms interact to control chromatin dynamics: focus on laminopathies. Nucleus, 5(5).
    102.Mohler, P. J., & Bennett, V. (2005). Ankyrin-based cardiac arrhythmias: a new class of channelopathies due to loss of cellular targeting. Current Opinion in Cardiology, 20(3), 189鈥?93.PubMed
    103.Robaei, D., Ford, T., & Ooi, S. Y. (2014). Ankyrin-b syndrome: a case of sinus node dysfunction, atrial fibrillation and prolonged QT in a young adult. Heart Lung Circulatory
    104.Mohler, P. J., Le Scouarnec, S., Denjoy, I., Lowe, J. S., Guicheney, P., Caron, L., et al. (2007). Defining the cellular phenotype of 鈥渁nkyrin-B syndrome鈥?variants: human ANK2 variants associated with clinical phenotypes display a spectrum of activities in cardiomyocytes. Circulation, 115(4), 432鈥?41.PubMed
    105.Ackerman, M. J., & Mohler, P. J. (2010). Defining a new paradigm for human arrhythmia syndromes: phenotypic manifestations of gene mutations in ion channel- and transporter-associated proteins. Circulation Research, 107(4), 457鈥?65.PubMed Central PubMed
    106.Barbuti, A., Terragni, B., Brioschi, C., & DiFrancesco, D. (2007). Localization of f-channels to caveolae mediates specific beta2-adrenergic receptor modulation of rate in sinoatrial myocytes. Journal of Molecular and Cellular Cardiology, 42(1), 71鈥?8.PubMed
    107.Vatta, M., Ackerman, M. J., Ye, B., Makielski, J. C., Ughanze, E. E., Taylor, E. W., et al. (2006). Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation, 114(20), 2104鈥?112.PubMed
    108.Cronk, L. B., Ye, B., Kaku, T., Tester, D. J., Vatta, M., Makielski, J. C., et al. (2007). Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3. Heart Rhythm, 4(2), 161鈥?66.PubMed Central PubMed
    109.Barbuti, A., Scavone, A., Mazzocchi, N., Terragni, B., Baruscotti, M., & Difrancesco, D. (2012). A caveolin-binding domain in the HCN4 channels mediates functional interaction with caveolin proteins. Journal of Molecular and Cellular Cardiology, 53(2), 187鈥?95.PubMed
    110.Liu, Y., Bai, R., Wang, L., Zhang, C., Zhao, R., Wan, D., et al. (2013). Identification of a novel de novo mutation associated with PRKAG2 cardiac syndrome and early onset of heart failure. PLoS One, 8(5), e64603.PubMed Central PubMed
  • 作者单位:Raffaella Milanesi (1) (2)
    Annalisa Bucchi (1) (2)
    Mirko Baruscotti (1) (2)

    1. Department of Biosciences, University of Milano, via Celoria 26, 20133, Milan, Italy
    2. Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata, University of Milano, Milan, Italy
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Cardiology
  • 出版者:Springer Netherlands
  • ISSN:1572-8595
文摘
The sinoatrial node (SAN) and the atrioventricular node (AVN) are the anatomical and functional regions of the heart which play critical roles in the generation and conduction of the electrical impulse. Their functions are ensured by peculiar structural cytological properties and specific collections of ion channels. Impairment of SAN and AVN activity is generally acquired,but in some cases familial inheritance has been established and therefore a genetic cause is involved. In recent years, combined efforts of clinical practice and experimental basic science studies have identified and characterized several causative gene mutations associated with the nodal syndromes. Channelopathies, i.e., diseases associated with defective ion channels, remain the major cause of genetically determined nodal arrhythmias; however, it is becoming increasingly evident that mutations in other classes of regulatory and structural proteins also have profound pathophysiological roles. In this review, we will present some aspects of the genetic identification of the molecular mechanism underlying both SAN and AVN dysfunctions with a particular focus on mutations of the Na, pacemaker (HCN), and Ca channels. Genetic defects in regulatory proteins and calcium-handling proteins will be also considered. In conclusion, the identification of the genetic defects associated with familial nodal dysfunction is an essential step for implementing an appropriate therapeutic treatment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700