Cry Proteins from Bacillus thuringiensis Active against Diamondback Moth and Fall Armyworm
详细信息    查看全文
  • 作者:M C Silva ; H A A Siqueira ; L M Silva ; E J Marques ; R Barros
  • 关键词:Biological control ; cry proteins ; microbial control ; sustainable pest management
  • 刊名:Neotropical Entomology
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:44
  • 期:4
  • 页码:392-401
  • 全文大小:623 KB
  • 参考文献:Aly NAH (2007) PCR detection of cry genes in local Bacillus thuringiensis isolates. Aust J Basic Appl Sci 1:461-66
    Aranda E, Sanchez JA, Peferoen M, Güereca L, Bravo A (1996) Interactions of Bacillus thuringiensis crystal proteins with the midgut epithelial cells of Spodoptera frugiperda (Lepidoptera: Noctuidae). J Invertebr Pathol 68:203-12PubMed View Article
    Aronson AI, Fitz-James P (1976) Structure and morphogenesis of the bacterial spore coat. Microbiol Mol Biol Rev 40:360-02
    Asano SI, Yamashita C, Iizuka T, Takeuchi K, Yamanaka S, Cerf D, Yamamoto T (2003) A strain of Bacillus thuringiensis subsp. galleriae containing a novel cry8 gene highly toxic to Anomala cuprea (Coleoptera: Scarabaeidae). Biol Control 28:191-96View Article
    Ben-Dov E, Zaritsky A, Dahan E, Barak Z, Sinai R, Manasherob R, Khamraev A, Troitskaya E, Dubitsky A, Berezina N, Margalith Y (1997) Extended screening by PCR for seven cry-group genes from field- collected strains of Bacillus thuringiensis. Appl Environ Microbiol 63:4883-890PubMed Central PubMed
    Bhalla R, Dalal M, Panguluri SK, Jagadish B, Mandaokar AD, Singh AK, Kumar PA (2005) Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis. FEMS Microbiol Lett 243:467-72PubMed View Article
    Blanco CA, Portilla M, Jurat-Fuentes JL, Sanchez JF, Viteri D (2010) Susceptibility of isofamilies of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Cry1Ac and Cry1Fa proteins of Bacillus thuringiensis. Southwest Entomol 35:409-15View Article
    Bourque SN, Valero JR, Mercier J, Lavoie MC, Levesque RC (1993) Multiplex polymerase chain reaction for detection and differentiation of the microbial insecticide Bacillus thuringiensis. Appl Environ Microbiol 59:523-27PubMed Central PubMed
    Brachman PS, Freeley JC (1970) Spore stain (Wirtz-Conklin). In: Blair JE, Lennette EH, Truant JP (eds) Manual of clinical microbiology. American Society of Microbiology, Bethesda, pp 143-47
    Bravo A, Sarabia S, Lopez L, Ontiveros H, Abarca C, Ortiz A, Ortiz M, Lina L, Villalobos FJ, Pena G, Nunez-Valdez ME, Soberon M, Quintero R (1998) Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl Environ Microbiol 64:4965-972PubMed Central PubMed
    Bueno RCOF, Carneiro TR, Pratissoli D, Bueno AF, Fernandes OA (2008) Biology and thermal requirements of Telenomus remus reared on fall armyworm Spodoptera frugiperda eggs. Cienc Rural 38:1-
    Castelo Branco M, Fran?a FH, Medeiros MA, Leal JGT (2001) Uso de inseticidas para o controle da tra?a-do-tomateiro e tra?a-das-crucíferas: um estudo de caso. Hortic Bras 19:60-3View Article
    Chen M, Shelton A, Ye G (2011) Insect-resistant genetically modified rice in China: from research to commercialization. Annu Rev Entomol 56:81-01PubMed View Article
    Crickmore N, Zeigler D, Bravo A, Feitelson J, Schnepf E, Lereclus D, Baum J, Van Rie J, Dean D (2015) Bacillus thuringiensis toxin nomenclature. Available at: http://?www.?lifesci.?sussex.?ac.?uk/?home/?Neil_?Crickmore/?Bt/-/span> . Accessed 28 Jan 2015
    Escudero IR, Estela A, Escriche B, Caballero P (2007) Potential of the Bacillus thuringiensis toxin reservoir for the control of Lobesia botrana (Lepidoptera: Tortricidae), a major pest of grape plants. Appl Environ Microbiol 73:337-40View Article
    Fang J, Xu X, Wang P, Zhao JZ, Shelton AM, Cheng J, Feng MG, Shen Z (2007) Characterization of chimeric Bacillus thuringiensis Vip3 toxins. Appl Environ Microbiol 73:956-61PubMed Central PubMed View Article
    Furlong MJ, Wright DJ, Dosdall LM (2013) Diamondback moth ecology and management: problems, progress, and prospects. Annu Rev Entomol 58:517-41PubMed View Article
    Gong Y, Wang C, Yang Y, Wu S, Wu Y (2010) Characterization of resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella from China. J Invertebr Pathol 104:90-6PubMed View Article
    Granero F, Ballester V, Ferré J (1996) Bacillus thuringiensis crystal proteins Cry1Ab and Cry1Fa share a high affinity binding site in Plutella xylostella (L.). Biochem Biophys Res Commun 224:779-83PubMed View Article
    Hernández-Rodríguez CS, Hernández-Martínez P, van Rie J, Escriche B, Ferré J (2013) Shared midgut binding sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda. PLoS ONE 8:68164View Article
    H?fte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242-55PubMed Central PubMed
    Hori H, Suzuki N, Ogiwara K, Himejima M, Indrasith LS, Minami M, Asano S, Sato R, Ohba M, Iwahana H (1994) Characterization of larvicidal toxin protein from Bacillus thuringiensis serovar japonensis strain Buibui specific for scarabaeid beetles. J Appl Bacteriol 76:307-13PubMed View Article
    Jayakumar S, Kaur S (2013) Occurrence of cry genes in Bacillus thuringiensis (Bt)
  • 作者单位:M C Silva (1)
    H A A Siqueira (2)
    L M Silva (2)
    E J Marques (2)
    R Barros (2)

    1. Depto de Química e Biologia, Univ Estadual do Maranh?o, Caxias, MA, Brasil
    2. Depto de Agronomia, Univ Federal Rural de Pernambuco, Recife, PE, Brasil
  • 刊物主题:Entomology; Agriculture; Life Sciences, general;
  • 出版者:Springer US
  • ISSN:1678-8052
文摘
Biopesticides based on Bacillus thuringiensis and genetically modified plants with genes from this bacterium have been used to control Plutella xylostella (L.) and Spodoptera frugiperda (J.E. Smith). However, the selection pressure imposed by these technologies may undermine the efficiency of this important alternative to synthetic insecticides. Toxins with different modes of action allow a satisfactory control of these insects. The purpose of this study was to characterize the protein and gene contents of 20 B. thuringiensis isolates from soil and insect samples collected in several areas of Northeast Brazil which are active against P. xylostella and S. frugiperda. Protein profiles were obtained by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Polymerase chain reaction assays were used to determine toxin genes present within bacterial isolates. The protein profile of the majority of the isolates produced bands of approximately 130?kDa, suggesting the presence of Cry1, Cry8 and Cry9 proteins. The gene content of the isolates of B. thuringiensis investigated showed different gene profiles. Isolates LIIT-4306 and LIIT-4311 were the most actives against both species, with LC50 of 0.03 and 0.02?×-08?spores?mL?, respectively, for P. xylostella, and LC50 of 0.001?×-08?spores?mL? for S. frugiperda. These isolates carried the cry1, cry1Aa, cry1Ab, cry1Ac, cry1B, cry1C, cry1D, cry1F, cry2, cry2A, cry8, and cry9C genes. The obtained gene profiles showed great potential for the control of P. xylostella and S. frugiperda, primarily because of the presence of several cry1A genes, which are found in isolates of B. thuringiensis active against these insects.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700