Single-molecular diodes based on opioid derivatives
详细信息    查看全文
  • 作者:M. R. S. Siqueira ; S. M. Corrêa ; R. M. Gester ; J. Del Nero…
  • 关键词:Molecular electronics ; Rectifying diode ; Tunneling diode ; Electron transport ; Non ; equilibrium Green’s functions ; Opioids
  • 刊名:Journal of Molecular Modeling
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:21
  • 期:12
  • 全文大小:2,271 KB
  • 参考文献:1.Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29:277-83CrossRef
    2.Reed MA (1999) Molecular-scale electronics. P IEEE 87:652-58CrossRef
    3.Huang J, Momenzadeh M, Lombardi F (2007) An overview of nanoscale devices and circuits. IEEE Des Test Comput 24:304-11CrossRef
    4.He L, Duan L, Qiao J, Zhang D, Wang L, Qiu Y (2010) Efficient blue-green and white organic light-emitting diodes with a small-molecule host and cationic iridium complexes as dopants. Appl Phys A 100:1035-040CrossRef
    5.Baschieri A, Muzzioli S, Matteucci E, Stagni S, Massib M, Sambri L (2015) New heterometallic Ir(III)2–Eu(III) complexes: white light emission from a single molecule. Dalton Trans 44:37-0CrossRef
    6.El-Shishtawy RM, Asiri AM, Aziz SG, Elroby SAK (2014) Molecular design of donor-acceptor dyes for efficient dye-sensitized solar cells I: a DFT study. J Mol Model 20:2241-241CrossRef
    7.Sun M, Cao Z (2014) DFT and TD-DFT studies on osmacycle dyes with tunable photoelectronic properties for solar cells. Theor Chem Acc 133:1531-538CrossRef
    8.Chang PH, Liu H, Nikolic BK (2014) First-principles versus semi-empirical modeling of global and local electronic transport properties of graphene nanopore-based sensors for DNA sequencing. J Comput Electron 13:847-56CrossRef
    9.Girdhar A, Sathe C, Schulten K, Leburton JP (2013) Graphene quantum point contact transistor for DNA sensing. P Natl Acad Sci USA 110:16748-6753CrossRef
    10.Wang L, Zheng J, Zhou J, Qin R, Li H, Mei W-N, Nagase S, Lu J (2011) Tuning graphene nanoribbon field effect transistors via controlling doping level. Theor Chem Acc 130:483-89CrossRef
    11.Wang X, Guo Y, Zhang Z (2013) Field-effect transistors based on single graphene oxide nanoribbon from longitude-unzipped carbon nanotubes. J Nanopart Res 15:2147-153CrossRef
    12.Zhao LN, Wang XF, Yao ZH, Hou ZF, Yee M, Zhou X, Lin SH, Lee TS (2008) Atomistic modeling of the electrostatic and transport properties of a simplified nanoscale field effect transistor. J Comput Electron 7:500-08CrossRef
    13.Mizuseki H, Niimura K, Majumder C, Belosludov RV, Farajian AA, Kwazoe Y (2003) Theoretical study of dono-spacer-acceptor structure molecule for stable molecular rectifier. Mol Cryst Liq Cryst 406:11-7CrossRef
    14.Balanay MP, Kim DH (2008) DFT/TD-DFT molecular design of porphyrin analogues for use in dye-sensitized solar cells. Phys Chem Chem Phys 10:5121-127CrossRef
    15.Saraiva-Souza A, Gester RM, Reis MAL, Souza FM, Del Nero J. (2008) Design of a molecular π
    idge field effect transistor (MBFET). J Comput Theor Nanosci 5:1-CrossRef
    16.Menezes MG, Saraiva-Souza A, Del Nero J, Capaz RB (2010) Proposal for a single-molecule field-effect transistor for phonons. Phys Rev B 81:012302-12305CrossRef
    17.Grahen ER, Reis MA, Souza FM, Del Nero J. (2010) Transport model of controlled molecular rectifier showing unusual negative differential resistance effect. J Nanosci Nanotechnol 10:8112-117CrossRef
    18.Xue Y, Datta S, Ratner MA (2002) First-principles based matrix Green’s function approach to molecular electronic devices: general formalism. Chem Phys 281:151-70CrossRef
    19.Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matt 14:2745-779CrossRef
    20.Maassen J, Harb M, Michaud-Rioux V, Zhu Y, Guo H (2013) Quantum transport modeling from first principles. P IEEE 101:518-30CrossRef
    21.Zhang L, Zahid F, Zhu Y, Liu L, Wang J, Guo H, Ching P, Chan H, Chan M (2013) First principles simulations of nanoscale silicon devices with uniaxial strain. IEEE T Electron Dev 60:3527-533CrossRef
    22.Li Z, Smeu M, Rives A, Maraval V, Chauvin R, Ratner MA, Borguet E (2015). Nat Commun 6:6321-329CrossRef
    23.Saha KK, Nikoli? BK, Meunier V, Lu W, Bernholc J (2010) Quantum-interference-controlled three-terminal molecular transistors based on a single ring-shaped molecule connected to graphene nanoribbon electrodes. Phys Rev Lett 236803-236806:105
    24.Saha KK, Nikolic BK (2013) Negative differential resistance in graphene-nanoribbon–carbon-nanotube crossbars: a first-principles multiterminal quantum transport study. J Comput Electron 12:542-52CrossRef
    25.Zu F, Liu Z, Yao K, Gao G, Fu H, Zhu S, Ni Yun, Peng L (2014) Nearly perfect spin filter, spin valve and negative differential resistance effects in a Fe 4-based single-molecule junction. Sci Rep 4:4838-842CrossRef
    26.Maassen J, Ji W, Guo H (2011) Graphene spintronics: the role of ferromagnetic electrodes. Nano Lett 11:151-55CrossRef
    27.Zahedi E (2015) Transport properties of a single-molecular diode with one backbone, and two backbones in parallel: frontier orbital analysis and NEGF-DFT study. Eur Phys J Plus 130:96-08CrossRef
    28.Li Y, Yao J, Liu C, Yang C (2008) Theoretical investigation on electron transport properties of a single molecular diode. J Molecular Struc-THEOCHEM
  • 作者单位:M. R. S. Siqueira (1)
    S. M. Corrêa (1)
    R. M. Gester (2)
    J. Del Nero (1)
    A. M. J. C. Neto (1)

    1. Departamento de Física, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
    2. Faculdade de Física, Universidade Federal do Sul e Sudeste do Pará, Marabá, PA, 68505-080, Brazil
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
We propose an efficient single-molecule rectifier based on a derivative of opioid. Electron transport properties are investigated within the non-equilibrium Green’s function formalism combined with density functional theory. The analysis of the current–voltage characteristics indicates obvious diode-like behavior. While heroin presents rectification coefficient R>1, indicating preferential electronic current from electron-donating to electron-withdrawing, 3 and 6-acetylmorphine and morphine exhibit contrary behavior, R<1. Our calculations indicate that the simple inclusion of acetyl groups modulate a range of devices, which varies from simple rectifying to resonant-tunneling diodes. In particular, the rectification rations for heroin diodes show microampere electron current with a maximum of rectification (R=9.1) at very low bias voltage of ?.6 V and (R=14.3)?.8 V with resistance varying between 0.4 and 1.5 M Ω. Once most of the current single-molecule diodes usually rectifies in nanoampere, are not stable over 1.0 V and present electrical resistance around 10 M. Molecular devices based on opioid derivatives are promising in molecular electronics. Keywords Molecular electronics Rectifying diode Tunneling diode Electron transport Non-equilibrium Green’s functions Opioids

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700