The tumor immunosuppressive microenvironment impairs the therapy of anti-HER2/neu antibody
详细信息    查看全文
  • 作者:Meng Xu (1) (2)
    Xuexiang Du (1) (2)
    Mingyue Liu (1) (2)
    Sirui Li (1) (2)
    Xiaozhu Li (1)
    Yang-Xin Fu (1) (3)
    Shengdian Wang (1)
  • 关键词:anti ; HER2/neu antibody ; CD8+ T cells ; tumor microenvironment ; tumor therapy ; immune suppression
  • 刊名:Protein & Cell
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:3
  • 期:6
  • 页码:441-449
  • 全文大小:623KB
  • 参考文献:1. Apetoh, L., Ghiringhelli, F., Tesniere, A., Obeid, M., Ortiz, C., Criollo, A., Mignot, G., Maiuri, M.C., Ullrich, E., Saulnier, P., et al. (2007). Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13, 1050鈥?059. CrossRef
    2. Beatty, G.L., Chiorean, E.G., Fishman, M.P., Saboury, B., Teitelbaum, U.R., Sun, W., Huhn, R.D., Song, W., Li, D., Sharp, L.L., et al. (2011). CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612鈥?616. CrossRef
    3. Donkor, M.K., Sarkar, A., Savage, P.A., Franklin, R.A., Johnson, L.K., Jungbluth, A.A., Allison, J.P., and Li, M.O. (2011). T cell surveillance of oncogene-induced prostate cancer is impeded by T cell-derived TGF-beta1 cytokine. Immunity 35, 123鈥?34. CrossRef
    4. Dubois, S., Patel, H.J., Zhang, M., Waldmann, T.A., and Muller, J.R. (2008). Preassociation of IL-15 with IL-15R alpha-IgG1-Fc enhances its activity on proliferation of NK and CD8+/CD44high T cells and its antitumor action. J Immunol 180, 2099鈥?106.
    5. Epardaud, M., Elpek, K.G., Rubinstein, M.P., Yonekura, A.R., Bellemare-Pelletier, A., Bronson, R., Hamerman, J.A., Goldrath, A.W., and Turley, S.J. (2008). Interleukin-15/interleukin-15R alpha complexes promote destruction of established tumors by reviving tumor-resident CD8+ T cells. Cancer Res 68, 2972鈥?983. CrossRef
    6. Ferris, R.L., Jaffee, E.M., and Ferrone, S. (2010). Tumor antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and immunoescape. J Clin Oncol 28, 4390鈥?399. CrossRef
    7. Gabrilovich, D.I., Ostrand-Rosenberg, S., and Bronte, V. (2012). Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12, 253鈥?68. CrossRef
    8. Han, K.P., Zhu, X., Liu, B., Jeng, E., Kong, L., Yovandich, J.L., Vyas, V.V., Marcus, W.D., Chavaillaz, P.A., Romero, C.A., et al. (2011). IL-15:IL-15 receptor alpha superagonist complex: high-level co-expression in recombinant mammalian cells, purification and characterization. Cytokine 56, 804鈥?10. CrossRef
    9. Keir, M.E., Butte, M.J., Freeman, G.J., and Sharpe, A.H. (2008). PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26, 677鈥?04. CrossRef
    10. Kim, Y.S., Kim, Y.J., Lee, J.M., Kim, E.K., Park, Y.J., Choe, S.K., Ko, H.J., and Kang, C.Y. (2012). Functional Changes in Myeloid-Derived Suppressor Cells (MDSCs) during Tumor Growth: FKBP51 Contributes to the Regulation of the Immunosuppressive Function of MDSCs. J Immunol 188, 4226鈥?234. CrossRef
    11. Lee, Y., Auh, S.L., Wang, Y., Burnette, B., Meng, Y., Beckett, M., Sharma, R., Chin, R., Tu, T., Weichselbaum, R.R., et al. (2009). Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114, 589鈥?95. CrossRef
    12. Lipson, E.J., and Drake, C.G. (2011). Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clin Cancer Res 17, 6958鈥?962. CrossRef
    13. Ma, G., Pan, P.Y., Eisenstein, S., Divino, C.M., Lowell, C.A., Takai, T., and Chen, S.H. (2011). Paired immunoglobin-like receptor-B regulates the suppressive function and fate of myeloid-derived suppressor cells. Immunity 34, 385鈥?95. CrossRef
    14. Mantovani, A., Allavena, P., Sica, A., and Balkwill, F. (2008). Cancer-related inflammation. Nature 454, 436鈥?44. CrossRef
    15. Marigo, I., Dolcetti, L., Serafini, P., Zanovello, P., and Bronte, V. (2008). Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev 222, 162鈥?79. CrossRef
    16. Mortier, E., Quemener, A., Vusio, P., Lorenzen, I., Boublik, Y., Grotzinger, J., Plet, A., and Jacques, Y. (2006). Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 脳 IL-15R alpha fusion proteins. J Biol Chem 281, 1612鈥?619. CrossRef
    17. Park, S., Jiang, Z., Mortenson, E.D., Deng, L., Radkevich-Brown, O., Yang, X., Sattar, H., Wang, Y., Brown, N.K., Greene, M., et al. (2010). The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 18, 160鈥?70. CrossRef
    18. Qian, B.Z., and Pollard, J.W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39鈥?1. CrossRef
    19. Sakuishi, K., Apetoh, L., Sullivan, J.M., Blazar, B.R., Kuchroo, V.K., and Anderson, A.C. (2010). Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207, 2187鈥?194. CrossRef
    20. Schreiber, R.D., Old, L.J., and Smyth, M.J. (2011). Cancer immunoediting: integrating immunity鈥檚 roles in cancer suppression and promotion. Science 331, 1565鈥?570. CrossRef
    21. Sistigu, A., Viaud, S., Chaput, N., Bracci, L., Proietti, E., and Zitvogel, L. (2011). Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Semin Immunopathol 33, 369鈥?83. CrossRef
    22. Tartour, E., Pere, H., Maillere, B., Terme, M., Merillon, N., Taieb, J., Sandoval, F., Quintin-Colonna, F., Lacerda, K., Karadimou, A., et al. (2011). Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev 30, 83鈥?5. CrossRef
    23. Willimsky, G., Czeh, M., Loddenkemper, C., Gellermann, J., Schmidt, K., Wust, P., Stein, H., and Blankenstein, T. (2008). Immunogenicity of premalignant lesions is the primary cause of general cytotoxic T lymphocyte unresponsiveness. J Exp Med 205, 1687鈥?700. CrossRef
    24. Yu, P., Lee, Y., Liu, W., Krausz, T., Chong, A., Schreiber, H., and Fu, Y.X. (2005). Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J Exp Med 201, 779鈥?91. CrossRef
    25. Zhou, Q., Munger, M.E., Veenstra, R.G., Weigel, B.J., Hirashima, M., Munn, D.H., Murphy, W.J., Azuma, M., Anderson, A.C., Kuchroo, V.K., et al. (2011). Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood 117, 4501鈥?510. CrossRef
    26. Zitvogel, L., Kepp, O., and Kroemer, G. (2011). Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol 8, 151鈥?60. linonc.2010.223">CrossRef
  • 作者单位:Meng Xu (1) (2)
    Xuexiang Du (1) (2)
    Mingyue Liu (1) (2)
    Sirui Li (1) (2)
    Xiaozhu Li (1)
    Yang-Xin Fu (1) (3)
    Shengdian Wang (1)

    1. Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
    2. Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
    3. Department of Pathology and Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA
文摘
It has been well established that immune surveillance plays critical roles in preventing the occurrence and progression of tumor. More and more evidence in recent years showed the host anti-tumor immune responses also play important roles in the chemotherapy and radiotherapy of cancers. Our previous study found that tumor- targeting therapy of anti-HER2/neu mAb is mediated by CD8+ T cell responses. However, we found here that enhancement of CD8+ T cell responses by combination therapy with IL-15R/IL-15 fusion protein or anti-CD40, which are strong stimultors for T cell responses, failed to promote the tumor therapeutic effects of anti-HER2/neu mAb. Analysis of tumor microenviornment showed that tumor tissues were heavily infiltrated with the immunosuppressive macrophages and most tumor infiltrating T cells, especially CD8+ T cells, expressed high level of inhibitory co-signaling receptor PD-1. These data suggest that tumor microenvironment is dominated by the immunosuppressive strategies, which thwart anti-tumor immune responses. Therefore, the successful tumor therapy should be the removal of inhibitory signals in the tumor microenvironment in combination with other therapeutic strategies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700