Enhanced Fluorescence of Graphene Oxide by Well-Controlled Au@SiO2 Core-Shell Nanoparticles
详细信息    查看全文
文摘
Graphene and graphene derivatives, including graphene oxide (GO) and reduced GO (rGO), have attracted remarkable attention in different fields due to their unique electronic, thermal, and mechanical properties, whereas the fluorescence property is rarely been studied. This paper reports on metal-enhanced fluorescence Au@SiO2 composite nanoparticles adsorbed graphene oxide nanosheets, where the silica-shell is used to control the distance between gold-core and fluorophore GO, and a positively charged polyelectrolyte poly(allylamine hydrochloride) (PAH) is used to adsorb the negatively charged silica-shell and GO by layer-by-layer assembly (LbL) approach. The silica-shell around the 80?nm gold-core can be well-controlled by ending the reaction at different times. Various analytical techniques were applied to characterize the morphology and optical characters of the as-prepared particles. A more than three-fold increase of the fluorescence intensity of GO was obtained.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700