Theoretical and experimental investigation on a liquid-gas ejector power cycle using ammonia-water
详细信息    查看全文
  • 作者:Han Yuan (1)
    Ning Mei (1)
    Yan Li (1)
    Shuai Yang (1)
    SiYuan Hu (1)
    YiFang Han (1)
  • 关键词:ammonia ; water ; power cycle ; ejector ; efficiency
  • 刊名:SCIENCE CHINA Technological Sciences
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:56
  • 期:9
  • 页码:2289-2298
  • 全文大小:680KB
  • 参考文献:1. Bombarda P, Invernizzi C M, Pietra C. Heat recovery from diesel engines: A thermodynamic comparison between Kalina and ORC cycles. Appl Therm Eng, 2010, 30: 212鈥?19 CrossRef
    2. Kalina A I. Combined cycle system with novel bottoming cycle. J Eng Gas Turb Power, 1984, 106: 737鈥?42 CrossRef
    3. DiPippo R. Second Law assessment of binary plants generating power from low-temperature geothermal fluids. Geothermics, 2004, 33: 565鈥?86 CrossRef
    4. Lolos P A, Rogdakis E D. A Kalina power cycle driven by renewable energy sources. Energy, 2009, 34: 457鈥?64 CrossRef
    5. Wagar W R, Zamfirescu C, Dincer I. Thermodynamic performance assessment of an ammonia water Rankine cycle for power and heat production. Energ Conv Manag, 2010, 51: 2501鈥?509 CrossRef
    6. Dai Y, Wang J, Gao L. Exergy analysis, parametric analysis and optimization for a novel combined power and ejector refrigeration cycle. Appl Therm Eng, 2009, 29: 1983鈥?990 CrossRef
    7. Xu H, Wu G X. The jet over a stretching wall with suction or injection. Sci China-Phys Mech Astron, 2011, 54: 502鈥?10 CrossRef
    8. Zhou L X. Second-order moment modeling of dispersed two-phase turbulence-Part 1: USM, / k-epsilon- / k( / p), and non-linear / k-epsilon- / k( / p) two-phase turbulence models. Sci China-Phys Mech Astron, 2011, 54: 1098鈥?107 CrossRef
    9. Qian L J, Lin J Z. Modeling on effervescent atomization: A review. Sci China-Phys Mech Astron, 2011, 54: 2109鈥?129 CrossRef
    10. Mao F, Shi Y P, Xuan L J, et al. On the governing equations for the compressing process and its coupling with other processes. Sci China-Phys Mech Astron, 2011, 54: 1154鈥?167 CrossRef
    11. Kandakure M T, Gaikar V G, Patwardhan A W. Hydrodynamic aspects of ejectors. Chem Eng Sci, 2005, 60: 6391鈥?402 CrossRef
    12. Yadav R L, Patwardhan A W. Design aspects of ejectors: Effects of suction chamber geometry. Chem Eng Sci, 2008, 63: 3886鈥?897 CrossRef
    13. Varga S, Oliveira A C, Diaconu B. Numerical assessment of steam ejector efficiencies using CFD. Int J Refrig, 2009, 32: 1203鈥?211 CrossRef
    14. Varga S, Oliveira A C, Ma X, et al. Experimental and numerical analysis of a variable area ratio steam ejector. Int J Refrig, 2011, 34: 1668鈥?675 CrossRef
    15. Ma S, Wang J, Yan Z, et al. Thermodynamic analysis of a new combined cooling, heat and power system driven by solid oxide fuel cell based on ammonia-water mixture. J Power Sources, 2011, 196: 8463鈥?471 CrossRef
    16. Kim K H, Han C H, Kim K. Effects of ammonia concentration on the thermodynamic performances of ammonia-water based power cycles. Thermochim Acta, 2012, 530: 7鈥?6 CrossRef
    17. Yapici R, Ersoy H.K. Performance characteristics of the ejector refrigeration system based on the constant area ejector flow model. Energ Conv Manag, 2005, 46: 3117鈥?135 CrossRef
    18. Yapici R, Ersoy H K, Aktoprakoglu A, et al. Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio. Int J Refrig, 2008, 31: 1183鈥?189 CrossRef
    19. Kairouani L, Elakhdar M, Nehdi E, et al. Use of ejectors in a multi-evaporator refrigeration system for performance enhancement. Int J Refrig, 2009, 32: 1173鈥?185 CrossRef
    20. Khaliq A, Agrawal B K, Kumar R. First and second law investigation of waste heat based combined power and ejector-absorption refrigeration cycle. Int J Refrig, 2012, 35: 88鈥?7 CrossRef
    21. Zhu Y, Jiang P. Hybrid vapor compression refrigeration system with an integrated ejector cooling cycle. Int J Refrig, 2012, 35: 68鈥?8 CrossRef
    22. Keenan J H, Neumann E P, Lustwerk F. An investigation of ejector design by analysis and experiment. J Appl Mech Trans ASME, 1950, 10: 299鈥?09
    23. Huang B J, Chang J M, Wang C P, et al. A 1-D analysis of ejector performance. Int J Refrig, 1999, 22: 354鈥?64 CrossRef
    24. Schulz S G C. Equations of state for the system ammonia鈭紈ater for use with computer. Prog Refrig Sci Technol, 1973, 2: 432鈥?35
    25. Ziegler B, Trepp C. Equation of state for ammonia-water mixtures. Int J Refrig, 1984, 7: 101鈥?06 CrossRef
    26. Yeh R H, Su T Z, Yang M S. Maximum output of an OTEC power plant. Ocean Eng, 2005, 32: 685鈥?00 CrossRef
    27. Mohammed Faizal, Ahmed M R. Experimental studies on a closed cycle demonstration OTEC plant working on small temperature difference. RenewY Energ, 2013, 51: 234鈥?40 CrossRef
  • 作者单位:Han Yuan (1)
    Ning Mei (1)
    Yan Li (1)
    Shuai Yang (1)
    SiYuan Hu (1)
    YiFang Han (1)

    1. College of Engineering, Ocean University of China, Qingdao, 266100, China
文摘
The purpose of this paper is to investigate a novel power cycle using low-temperature heat sources such as oceanic-thermal, biomass as well as industrial waste heat. Both a reheater and a liquid-gas ejector are used in this ammonia-water based cycle. Energy analysis and parametric analysis are performed to guide the theoretical performance and experimental investigation is done to verify the theoretical results. The results show that the generator pressure, heating source temperature and turbine outlet depressurization made by the ejector can affect the cycle performances. Besides, the experimental thermal efficiency is much lower than the theoretical one on account of the heat losses and irreversibility. Moreover, the performance of liquid-gas ejector is affected by primary flow pressure and temperature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700