Early warning smartphone diagnostics for water security and analysis using real-time pH mapping
详细信息    查看全文
  • 作者:Md. Arafat Hossain ; John Canning ; Sandra Ast ; Peter J. Rutledge…
  • 关键词:Lab ; in ; a ; phone ; Internet of Things ; optical sensing and sensor ; smartphone sensor ; photonic sensor ; fluorescence ; water security
  • 刊名:Photonic Sensors
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:5
  • 期:4
  • 页码:289-297
  • 全文大小:1,056 KB
  • 参考文献:[1]Australian government鈥檚 National Health and Medical Research Council, 鈥淎ustralian drinking water guidelines 6,鈥?National Water Quality Management Strategy, 2013, 2: 174.
    [2]Sydney Water, Quarterly Drinking Water Quality Report, 1 Jul. 2013 to 30 Sep. 2013, Sydney, Australian: Sydney Water. www.sydneywater.com.au, 2014.
    [3]P. H. Gleick, 鈥淲ater and terrorism,鈥?Water Policy, 2006, 8(6): 481鈥?03.CrossRef
    [4]J. S. Hall, J. G. Szabo, S. Panguluri, and G. Meiners, Distribution System Water Quality Monitoring: Sensor Technology Evaluation Methodology and Results, Cincinnati, U. S. A.: U. S. Environmental Protection Agency, 2009.
    [5]J. V. Capella, A. Bonastre, R. Ors, and M. Peris, 鈥淎 wireless sensor network approach for distributed in-line chemical analysis of water,鈥?Talanta, 2010, 80(5): 1789鈥?798.CrossRef
    [6]M. A. Hossain, J. Canning, S. Ast, T. L. Yen, P. J. Rutledge, and A. Jamalipour, 鈥淎 smartphone fluorometer - the lab-in-a-phone,鈥?in Conference: Optical Sensor, pp. SeTh2C.1, 2014.
    [7]M. A. Hossain, J. Canning, S. Ast, P. J. Rutledge, T. L. Yen, and A. Jamalipour, 鈥淟ab-in-a-phone: smartphone-based portable fluorometer for pH measurements of environmental water,鈥?IEEE Sensor Journal, 2015, 15(9): 5095鈥?102.CrossRef
    [8]A. F. Coskun, J. Wong, D. Khodadadi, R. Nagi, A. Teya, and A. Ozcan, 鈥淎 personalized food allergen testing platform on a cell phone,鈥?Lab Chip, 2013, 13(4): 636鈥?40.CrossRef
    [9]Q. Wei, R. Nagi, K. Sadeghi, S. Feng, E. Yan, S. J. Ki, et al., 鈥淒etection and spatial mapping of mercury contamination in water samples using a smart-phone,鈥?ACS Nano, 2014, 8(2): 1121鈥?129.CrossRef
    [10]S. Sumriddetchkajorn, K. Chaitavon, and Y. Intaravanne, 鈥淢obile-platform based colorimeter for monitoring chlorine concentration in water,鈥?Sensors and Actuators B: Chemical, 2014, 191: 561鈥?66 2014.CrossRef
    [11]Y. Intaravannea, S. Sumriddetchkajorn, and J. Nukeawa, 鈥淐ell phone-based two-dimensional spectral analysis for banana ripeness estimation,鈥?Sensors and Actuators B: Chemical, 2012, 168: 390鈥?94.CrossRef
    [12]A. Garc铆a, M. M. Erenas, E. D. Marinetto, C. A. Abada, I. O. Paya, A. J. Palma, et al., 鈥淢obile phone platform as portable chemical analyzer,鈥?Sensors and Actuators B: Chemical, 2011, 156(1): 350鈥?59, 2011.CrossRef
    [13]Z. Iqbal and R. B. Bjorklund, 鈥淎ssessment of a mobile phone for use as a spectroscopic analytical tool for foods and beverages,鈥?International Journal of Food Science & Technology, 2011, 46(11): 2428鈥?436.CrossRef
    [14]J. Canning, A. Lau, M. Naqshbandi, I. Petermann, and M. J. Crossley, 鈥淢easurement of fluorescence in a rhodamine-123 doped self-assembled鈥?giant鈥?meso-structured silica sphere using a smartphone as optical hardware,鈥?Sensors, 2011, 11(7): 70551鈥?062.
    [15]Z. Iqbal and R. B. Bjorklund, 鈥淐olorimetric analysis of water and sand samples performed on a mobile phone,鈥?Talanta, 2011, 84(4): 1118鈥?123.CrossRef
    [16]T. S. Park and J. Y. Yoon, 鈥淪martphone detection of escherichia coli from field water samples on paper microfluidics鈥?IEEE Sensor Journal, 2015, 15(3): 1902鈥?907.MathSciNet CrossRef
    [17]D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, 鈥淢obile phone based clinical microscopy for global health applications,鈥?PLoS ONE, 2009, 4(7): e6320-1鈥揺6320-7, 2009.
    [18]Z. J. Smith, K. Chu, A. R. Espenson, A. Gryshuk, M. Molinaro, D. M. Dwyre, et al., 鈥淐ell phone-based platform for biomedical device development and education applications,鈥?PLoS ONE, 2011, 6(3): e17150-1鈥揺17150-11.
    [19]Q. Wei, H. Qi, W. Luo, D. Tseng, S. J. Ki, Z. Wan, et al., 鈥淔luorescent imaging of single nanoparticles and viruses on a smart phone,鈥?ACS Nano, 2013, 7(10): 9147鈥?155.CrossRef
    [20]A. Skandarajah, C. D. Reber, N. A. Switz, and D. A. Fletcher, 鈥淨uantitative imaging with a mobile phone microscope,鈥?PLoS ONE, 2014, 9(5): e96906-1鈥揺96906-12.
    [21]S. Lee and C. Yang, 鈥淎 smartphone-based chip-scale microscope using ambient illumination,鈥?Lab Chip, 2014, 14(16): 3056鈥?063.CrossRef
    [22]H. C. Koydemir, Z. Gorocs, D. Tseng, B. Cortazar, S. Feng, R. Y. L. Chan, et al., 鈥淩apid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning,鈥?Lab Chip, 2015, 15(5): 1284鈥?293.CrossRef
    [23]S. K. J. Ludwig, H. Zhu, S. Phillips, A. Shiledar, S. Feng, D. Tseng, et al., 鈥淐ellphone-based detection platform for rbST biomarker analysis in milk extracts using a microsphere fluorescence immunoassay,鈥?Analytical and Bioanalytical Chemistry, 2014, 406(27): 6857鈥?866.CrossRef
    [24]D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, et al., 鈥淟abel-free bio-detection using a smartphone,鈥?Lab Chip, 2013, 13(11): 2124鈥?132.CrossRef
    [25]H. Yu, Y. Tan, and B. T. Cunningham, 鈥淪martphone fluorescence spectroscopy,鈥?Analytical Chemistriy, 2014, 86(17): 8805鈥?813.CrossRef
    [26]S. Dutta, A. Choudhury, and P. Nath, 鈥淓vanescent wave coupled spectroscopic sensing using smartphone,鈥?IEEE Photonics Technology Letters, 2014, 26(6): 568鈥?70.CrossRef ADS
    [27]M. A. Hossain, J. Canning, S. Ast, K. Cook, P. J. Rutledge, and A. Jamalipour, 鈥淐ombined 鈥榙ual鈥?absorption and fluorescent smartphone spectrometers,鈥?Optics Letters, 2015, 40(8): 1737鈥?740.CrossRef ADS
    [28]A. W. Martinez, S. T, Phillips, E. Carrilho, S. W. Thomas, H. Sindi, and G. M. Whitesides, 鈥淪imple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis,鈥?Analytical Chemistriy, 2008, 80(10): 3699鈥?707.CrossRef
    [29]L. Shen, J. A. Hagan, and I. Papautsky, 鈥淧oint-of-care colorimetric detection with a smartphone,鈥?Lab Chip, 2012, 12(21): 4240鈥?243.CrossRef
    [30]J. I. Hong and B. Y. Chang, Development of 鈥淪martphone-based colorimetry for multi-analyte sensing arrays,鈥?Lab Chip, 2014, 14(10): 1725鈥?732.CrossRef
    [31]J. E. Smith, D. K. Griffin, J. K. Leny, J. A. Hagen, J. L. Ch谩vez, and N. K. Loughnane, 鈥淐olorimetric detection with aptamer-gold nanoparticle conjugates coupled to an android based color analysis application for use in the field,鈥?Talanta, 2014, 121: 247鈥?55.CrossRef
    [32]O. M. Mancuso and D. Erickson, 鈥淐holesterol testing on a smartphone,鈥?Lab Chip, 2014, 14(4): 759鈥?63.CrossRef
    [33]N. S. K. Gunda, S. Naicker, S. Shinde, S. Kimbahune, S. Shrivastava, and S. Mitra, 鈥淢obile water kit (MWK): a smartphone compatible low-cost water monitoring system for rapid detection of total coliform and E. coli,鈥?Analytical Methods, 2014, 6(16): 62361鈥?246.
    [34]D. Erickson, D. O鈥橠ell, L. Jiang, V. Oncescu, A. Gumus, S. Lee, et al., 鈥淪martphone technology can be transformative to the deployment of lab-on-chip diagnostics,鈥?Lab Chip, 2014, 14(17): 3159鈥?164.CrossRef
    [35]T. S. Park, C. Baynes, S. I. Cho, and J. Y. Yoon, 鈥淧aper microfluidics for red wine tasting,鈥?RSC Advance, 2014, 4(46): 24356鈥?4362.CrossRef
    [36]International Telecommunication Union, Mobile-cellular subscriptions 2013, Available online: http://鈥媤ww.鈥媔tu.鈥媔nt/鈥媏n/鈥婭TU-D/鈥婼tatistics, 2015.
    [37]B. Oram, Water Research Centre, Available online: http://鈥媤ww.鈥媤ater-research.鈥媙et/鈥媔ndex.鈥媝hp/鈥媝h-in-the-e nvironment.mm, 2014.
    [38]J. Buffle and G. Horvai, In Situ Monitoring of Aquatic Systems: Chemical Analysis and Speciation. New York, U. S. A.: Willey, 2000.
    [39]J. Canning, M. Naqshbandi, and M. J. Crossley, 鈥淢easurement of rhodamine B absorption in self-assembled silica microwires using a Tablet as the optical source,鈥?in Proc. SPIE, vol. 8351, pp. 83512E-1鈥?3512E -5, 2012.
    [40]S. Feng, R. Caire, B. Cortazar, M. Turan, A. Wong, and A. Ozcan 鈥淚mmunochromatographic diagnostic test analysis using Google Glass,鈥?ACS Nano, 2014, 8(3): 3069鈥?079.CrossRef
    [41]B. Cortazar, H. C. Koydemir, D. Tseng, S. Feng, and A. Ozcan, 鈥淨uantification of plant chlorophyll content using google glass,鈥?Lab Chip, 2015, 15(7): 1708鈥?716.CrossRef
    [42]Sesorex, SAM-1 for iPhone, iPad and Android, Avialable online: http://鈥媤ww.鈥媠ensorex.鈥媍om/鈥媝roducts /more/sam_1, 2015.
    [43]A. P. D. Silva, H. Q. N. Gunaratne, J. L. Habib-Jiwan, C. P. McCoy, T. E. Rice, and J. P. Soumillion, 鈥淣ew fluorescent model compounds for the study of photoinduced electron transfer: the influence of a molecular electric field in the excited state,鈥?Angewandte Chemie International Edition, 1995, 34(16): 1728鈥?731.CrossRef
  • 作者单位:Md. Arafat Hossain (1) (3)
    John Canning (1) (2)
    Sandra Ast (2)
    Peter J. Rutledge (2)
    Abbas Jamalipour (3)

    1. interdisciplinary Photonics Laboratories (iPL), School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
    3. Wireless Networking Group (WiNG), School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
    2. School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Chinese Library of Science
    Laser Technology and Physics and Photonics
    Microwaves, RF and Optical Engineering
    Measurement Science and Instrumentation
    Optics, Optoelectronics, Plasmonics and Optical Devices
  • 出版者:University of Electronic Science and Technology of China, co-published with Springer
  • ISSN:2190-7439
文摘
Early detection of environmental disruption, unintentional or otherwise, is increasingly desired to ensure hazard minimization in many settings. Here, using a field-portable, smartphone fluorimeter to assess water quality based on the pH response of a designer probe, a map of pH of public tap water sites has been obtained. A custom designed Android application digitally processed and mapped the results utilizing the global positioning system (GPS) service of the smartphone. The map generated indicates no disruption in pH for all sites measured, and all the data are assessed to fall inside the upper limit of local government regulations, consistent with authority reported measurements. This implementation demonstrates a new security concept: network environmental forensics utilizing the potential of novel smartgrid analysis with wireless sensors for the detection of potential disruption to water quality at any point in the city. This concept is applicable across all smartgrid strategies within the next generation of the Internet of Things and can be extended on national and global scales to address a range of target analytes, both chemical and biological. Keywords Lab-in-a-phone Internet of Things optical sensing and sensor smartphone sensor photonic sensor fluorescence water security

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700